\(x^3\) + 17x + 36y

Tồn tại hay không sô nguyên x ; y...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

a, \(\left|x^4-1\right|\)\(+\left|y^2-3\right|=0​\)

-Vì: $\left\{\begin{matrix}
|x^4-1|\geq 0 & \\ 
|y^2-3|\geq 0 & 
\end{matrix}\right.$

-Để: $|x^4-1|+|y^2-3|=0$

-Thì:

$\Rightarrow \left\{\begin{matrix}
|x^4-1|=0 & \\ 
|y^2-3|=0 & 
\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x^4-1=0 & \\ 
y^2-3=0 & 
\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x^4=1 & \\ 
y^2=3 & 
\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
x=\pm 1 & \\ 
y=\pm \sqrt{3} & 
\end{matrix}\right.$

b, Đề thiếu kìa bạn!!

30 tháng 11 2015

a, ĐKXĐ: \(2x-1\ne0\)=>\(2x\ne1\)=>\(x\ne\frac{1}{2}\)

b, Thay \(x=2\) vào hàm số => \(y=\frac{3}{2\cdot2+1}=\frac{3}{5}\ne\frac{3}{4}\)

=> \(x=2\)\(y=\frac{3}{4}\) không thỏa mãn hàm số

28 tháng 1 2018

f(x)=/x-2018/+x

Xét x-2018>=0 =>x>=2018 mà x-2018+x=2x-2018=>2x>2018=>f(x)>2018

Xét x-2018<=0 => 2018-x+x=2018=>f(x)=2018. vậy với mọi x ta có x>=2018

28 tháng 1 2018

cảm ơn

24 tháng 3 2018

a/ Ta có VP là số lẻ nên VT cũng phải là số lẻ. Hay trong 2 số x, y phải có 1 số lẻ.

Giả sử số lẻ đó là x thì ta có

\(\hept{\begin{cases}x=2m+1\\y=2n\end{cases}}\)

\(\Rightarrow\left(2m+1\right)^2+\left(2n\right)^2=1999\)

\(\Leftrightarrow4\left(m^2+m+n\right)=1998\)

Ta thấy VT chia hết chi 4 còn VP không chia hết cho 4 nên phương trình vô nghiệm

24 tháng 3 2018

b/ \(9x^2+2=y^2+y\)

\(\Leftrightarrow36x^2+8=4y^2+4y\)

\(\Leftrightarrow\left(2y+1\right)^2-36x^2=9\)

\(\Leftrightarrow\left(2y+1-6x\right)\left(2y+1+6x\right)=9\)

23 tháng 3 2018

x+y+z hay là xyz hả bạn

24 tháng 3 2018

x*y*z =2018 nha

24 tháng 12 2018

Bài 1:

nếu x1<x2=>2018.x1-3<2018.x2

=>f(x1)<f(x2)

Bài 2:

nếu x dương=>100x2+2 dương

nếu x âm=>100x2+2 dương vì  xluôn dương

=>f(x)=f(-x)

Bài 3:

nếu x1<x2=>-2019x1+1<2019x2+1

=>f(x1)<f(x2)