Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài này hơi căng đấy, theo cách tao nhã nào đó, nó có thể là một bề dày không hoen ố.
Dễ dàng chứng minh được bđt sau:
\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\) \(\left(i\right)\)
Thật vậy, áp dụng bđt \(B.C.S\) cho bộ số bao gồm \(\left(1;1\right)\) và \(\left(x^2;y^2\right)\) ta được:
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow\) \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Hay nói cách khác, \(\sqrt{2\left(x^2+y^2\right)}\ge x+y\)
Dấu \("="\) xảy ra khi \(x=y\)
Vậy, bđt đã cho được chứng minh!
Theo như cách đề bài đã chọn, để biểu thức \(A\) có giá trị lớn nhất thì \(\frac{1}{A}\) phải đạt giá trị nhỏ nhất hay ta phải tìm \(P_{min}\)(với \(P=\frac{1}{A}\)\(\Rightarrow\) \(P\in Z^+\))
Ta có: \(P=\frac{x+y+2}{xy}=\frac{1}{x}+\frac{1}{y}+\frac{2}{xy}\)
Lại có: \(4=x^2+y^2\ge2xy\) \(\Rightarrow\) \(2\ge xy\) (theo bđt Cauchy cho hai số \(x^2,y^2\) không âm)
nên \(P\ge\frac{1}{x}+\frac{1}{y}+1\)
Mặt khác, tiếp tục áp dụng bđt \(Cauchy-Schwarz\) dạng \(Engel\) cho bộ số gồm \(\left(\frac{1}{x};\frac{1}{y}\right)\) đối với \(P,\)ta có:
\(P\ge\frac{4}{x+y}+1\ge\frac{4}{\sqrt{2\left(x^2+y^2\right)}}+1=\frac{4}{\sqrt{2.4}}+1=\sqrt{2}+1\) (theo bđt \(\left(i\right)\) )
Do đó, \(P_{min}=\sqrt{2}+1\) tức là \(\frac{1}{A}\) đạt giá trị nhỏ nhất là \(\sqrt{2}+1\)
Vậy, dễ dàng suy ra được \(A_{max}=\frac{1}{\sqrt{2}+1}\)
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}x,y>0\\x^2+y^2=4\\x=y\end{cases}\Leftrightarrow}\) \(x=y=\sqrt{2}\)
Cho x;y là các số thực thõa mãn \(x^2+y^2-xy=4\). Giá trị lớn nhất của biểu thức A= \(x^2+y^2\)bằng?
![](https://rs.olm.vn/images/avt/0.png?1311)
vì x,y>0
p/4=x^2+y^2/x^2+y^2-xy
đặt x/y=a>0
p/4=a^2+1/a^2-a+1 suy ra P(a^2-a+1=4(a^2+1) suy ra a^2(P-4)-Pa+P-4=0
ta có P^2-4(P-4)^2_>0 suy ra 8/3_< P_<8
ak dấu _< là lớn hơn hoặc bằng nha
k mk nữa
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(a=3x^2+xy+2y^2=>0\le a\le2\)
xét 2 TH
+) Nếu a=0 thì x=y=0 nên P =0
+) nếu \(a\ne0\)thì x hoặc y phải khác 0
xét biểu thức
\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}\)
nếu y=0 thì \(x\ne0=>\frac{P}{a}=\frac{1}{3}< P=\frac{a}{3}\le\frac{2}{3}\)
-xét TH y khác 0 , khi đó đặt \(t=\frac{x}{y}\), ta có
\(\frac{P}{a}=\frac{x^2+3xy-y^2}{3x^2+xy+2y^2}=\frac{t^2+3t-1}{3t^2+t+2}\)
gọi m là một giá trị \(\frac{P}{a}\), khi đó PT sau có nghiệm
\(m=\frac{t^2+3t-1}{3t^2+t+2}\)
\(=>\left(3m-1\right)t^2+\left(m-3\right)t+2m+1=0\left(1\right)\)
nếu \(m=\frac{1}{3}\left(thì\right)t=\frac{5}{8}.Nếu\left(m\ne\frac{1}{3}\right)thì\left(1\right)\)là PT bậc 2 có nghiệm khi zà chỉ khi
\(\left(m-3\right)^2-4\left(3m-1\right)\left(2m+1\right)\ge0\)
\(\Leftrightarrow23m^2+10m-13\le0\Leftrightarrow m\le\frac{13}{23}=>-1\le\frac{P}{a}\le\frac{26}{23}\)
mà a>0 nên \(-2\le-a\le P\le\frac{13}{23}a\le\frac{26}{23}\)
kết hợp những TH zừa xét lại ta có
\(-2\le P\le\frac{26}{23}\)
làm tiếp nè , mình phải làm tách ra không sợ nó lag
\(P=-2\)khi zà chỉ khi
\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=-\frac{1}{2}\\3x^2+xy+2y^2=2\end{cases}\Leftrightarrow\hept{\begin{cases}y=-2x\\3x^2-2x^2+8x^2=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}y=-2x\\x=\pm\frac{\sqrt{2}}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{\sqrt{2}}{3}\\y=\mp\frac{2\sqrt{2}}{3}\end{cases}}}\)
zậy MinP=-2 khi ....
+) MaxP nhé
\(P=\frac{26}{13}\)khi
\(\hept{\begin{cases}\frac{x}{y}=\frac{3-m}{2\left(3m-1\right)}=\frac{7}{4}\\3x^2+xy+2y^2=2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}y\\3\left(\frac{7}{4}y\right)+\frac{7}{4}y^2+2y^2=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{7}{4}y\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}\Leftrightarrow\hept{\begin{cases}x=\pm\frac{7}{3}\sqrt{\frac{2}{23}}\\y=\pm\frac{4}{3}\sqrt{\frac{2}{23}}\end{cases}}}\)
zậy ....
https://grandedesafio.com/vn/quiz/32281536