Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Vì a,b không âm nên căn có nghĩa.
Ta có: \(\sqrt{a}\) = \(a^2\) ; \(\sqrt{b}\) = \(b^2\)
Vì a < b nên \(a^2\) < \(b^2\)
=> \(\sqrt{a}\) < \(\sqrt{b}\) (dpcm)
b) Vì a, b không âm nên căn có nghĩa.
Ta có: \(\sqrt{a}\) < \(\sqrt{b}\) => \(\left(\sqrt{a}\right)^2\) < \(\left(\sqrt{b}\right)^2\) => a < b (dpcm)

\(a,\)\(a< b\Rightarrow a-b< 0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)< 0\)
Vì \(\sqrt{a}+\sqrt{b}>0\)
\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)\(\Rightarrow\sqrt{a}< \sqrt{b}\)\(\left(đpcm\right)\)
\(b,\)\(\sqrt{a}< \sqrt{b}\)\(\Rightarrow\sqrt{a}-\sqrt{b}< 0\)
Ta có :\(\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)=a-b\)
Mà \(\sqrt{a}-\sqrt{b}< 0\); \(\sqrt{a}+\sqrt{b}>0\)
\(\Rightarrow a-b< 0\)\(\Leftrightarrow a< b\)

\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=\frac{a+b+c}{a+b+c}=1\)
\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)
\(\Rightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Nếu n= 2, tức có hai giá trị x1 và x2, và từ giả thiết ở trên, ta có:
điều phải chứng minh - ở đây \(x_1=a;x_2=b\)
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\)
-Dấu đẳng thức trên xảy ra khi: Trung bình cộng lớn hơn hoặc bằng trung bình nhân

Ta có: \(a^4+b^4+c^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{3}\ge\frac{\left(\frac{\left(a+b+c\right)^2}{3}\right)^2}{3}=3\)
=> \(3abc\ge3\)=> \(abc\ge1\) ( 1)
Lại có: \(a^4+b^4+c^4+1\ge4\sqrt[4]{a^4b^4c^4}=4\left|abc\right|=4abc\)
=> \(3abc+1\ge4abc\Rightarrow abc\le1\)(2)
Từ (1); (2) => abc = 1
khi đó a = b = c = 1
=> P = 1^2019 + 1 ^2019 + 1^2019 = 3

a, Vì a,b không âm:
\(\Rightarrow\sqrt{a}+\sqrt{b}>0\)
Có \(a-b>0\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)>0\)
Mà \(\Rightarrow\sqrt{a}+\sqrt{b}>0\)
\(\Rightarrow\sqrt{a}-\sqrt{b}>0\Leftrightarrow\sqrt{a}>\sqrt{b}\)
b, Tương tự phần a:
\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)>0\Leftrightarrow a-b>0\Leftrightarrow a>b\)
( đổi ngược dấu a,b lại giúp mình nhé.)
Mới nghĩ ra câu a) 1 kiểu khác nhưng không biết đúng không :> nó vẫn ra hq như nhau thôi
Do a,b không âm và a < b nên b > 0 , suy ra :
\(\sqrt{a}+\sqrt{B}>0\) ( 1 )
Mặt khác , ta có :
\(a-b=\left(\sqrt{a}\right)^2-\left(\sqrt{b^2}\right)=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)\)( 2 )
Vì a < b nên a - b < 0 , từ ( 2 ) suy ra :
\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)< 0\)( 3 )
Từ (1) và (3) , suy ra :
\(\sqrt{a}-\sqrt{b}< 0\)hay \(\sqrt{a}< \sqrt{b}\)

a,Nếu a<b thì a-b<0,=>\(\left(\sqrt{a}-\sqrt{b}\right).\left(\sqrt{a}+\sqrt{b}\right)< 0\)Hằng đẳng thức.
\(\left(\sqrt{a}+\sqrt{b}\right)>0\)với a,b khác nhau \(\left(\sqrt{a}-\sqrt{b}\right)< 0\left(ĐPCM\right)\)
b,Nếu \(\sqrt{a}< \sqrt{b}\)thì \(\sqrt{a}-\sqrt{b}\)<0,=>(a-b).(a+b)<0 Hằng đẳng thức.
(a+b)>0 với a,b khác nhau (a-b)<0\(\left(ĐPCM\right)\)
a<b
\(\Leftrightarrow\sqrt{a}< \sqrt{b}\)