Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình nghĩ khó mà có người giải hết chỗ bài tập đấy của bạn, nhiều quá
3/ (Bạn tự vẽ hình giùm)
a/ \(\Delta ABC\)và \(\Delta ADC\)có:
\(\widehat{BAC}=\widehat{ACD}\)(AB // DC; ở vị trí so le trong)
Cạnh AC chung
\(\widehat{CAD}=\widehat{ACB}\)(AB // DC; ở vị trí so le trong)
=> \(\Delta ABC\)= \(\Delta ADC\)(g. c. g)
=> AD = BC (hai cạnh tương ứng)
và AB = DC (hai cạnh tương ứng)
b/ Ta có AD = BC (cm câu a)
và \(AN=\frac{1}{2}AD\)(N là trung điểm AD)
và \(MC=\frac{1}{2}BC\)(M là trung điểm BC)
=> AN = MC
Chứng minh tương tự, ta cũng có: BM = ND
\(\Delta AMB\)và \(\Delta CND\)có:
BM = ND (cmt)
\(\widehat{ABM}=\widehat{NDC}\)(AB // CD; ở vị trí so le trong)
AB = CD (\(\Delta ABC\)= \(\Delta ADC\))
=> \(\Delta AMB\)= \(\Delta CND\)(c. g. c)
=> \(\widehat{BAM}=\widehat{NCD}\)(hai góc tương ứng)
và \(\widehat{BAC}=\widehat{ACN}\)(\(\Delta ABC\)= \(\Delta ADC\))
=> \(\widehat{BAC}-\widehat{BAM}=\widehat{ACN}-\widehat{NCD}\)
=> \(\widehat{MAC}=\widehat{ACN}\)(1)
Chứng minh tương tự, ta cũng có \(\widehat{AMC}=\widehat{ANC}\)(2)
và AN = MC (cmt) (3)
=> \(\Delta MAC=\Delta NAC\)(g, c. g)
=> AM = CN (hai cạnh tương ứng) (đpcm)
c/ \(\Delta AOB\)và \(\Delta COD\)có:
\(\widehat{BAO}=\widehat{OCD}\)(AB // DC; ở vị trí so le trong)
AB = CD (cm câu a)
\(\widehat{ABO}=\widehat{ODC}\)(AD // BC; ở vị trí so le trong)
=> \(\Delta AOB\)= \(\Delta COD\)(g. c. g)
=> OA = OC (hai cạnh tương ứng)
và OB = OD (hai cạnh tương ứng)
d/ \(\Delta ONA\)và \(\Delta MOC\)có:
\(\widehat{AON}=\widehat{MOC}\)(đối đỉnh)
OA = OC (O là trung điểm AC)
\(\widehat{OAN}=\widehat{OCM}\)(AM // NC; ở vị trí so le trong)
=> \(\Delta ONA\)= \(\Delta MOC\)(g. c. g)
=> ON = OM (hai cạnh tương ứng)
=> O là trung điểm MN
=> M, O, N thẳng hàng (đpcm)

A B C F D E H K O
+) Ta có: Góc DAC = DAB + BAC = 90o + BAC
Góc BAE = CAE + BAC = 90o + BAC
=> góc DAC = BAE
Xét tam giác DAC và BAE có: DA = BA ; góc DAC = BAE; AC = AE
=> tam giác DAC = BAE (c-g-c) => DC= BE và góc AEB = ACD
Gọi O là giao của CD và BE; H là giao của AC và BE
+) Xét Tam giác AEH vuông có: Góc AEH + AHE = 90o
Mà góc AEH = ACD ; AHE = OHC ( đối đỉnh)
=> góc ACD + OHC = 90o
Xét tam giác HOC có góc HOC = 180o - ( ACD + OHC) = 90o => BOC = 90o ( kề bù)
- Gọi K là giao của CD và BF
ta có: góc KFC = KOB ( cùng = 90o); góc OKB = FKC (đối đỉnh)
=> góc OBF = FCK hay EBF = FCD
+) Xét tam giác FCD và FBE có: FC = FB (gt); góc FCD = FBE ; CD = BE ( chứng minh trên)
=> tam giác FCD = FBE (c- g- c)
=> FD = FE => tam giác FDE cân tại F (*)
Lại có: góc DFC = BFE mà góc DFC = DFB + BFC ; góc BFE = BFD +DFE
=> góc BFC = DFE ; góc BFC = 90o ( giả thiết) => góc DFE = 90o => tam giác DFE vuông tại F (**)
Từ (*)(**) => tam giác DFE vuông cân tại F

Cho góc xOy nhọn.Trên tia Ox ta đặt đoạn AB (A nằm giữa O và B);trên tia Oy lấy 2 điểm C và D sao cho AB=CD.Các đường trung trưc của đoạn AC và BD cắt nhau tại M.Hãy xác định quan hệ giữa 2 góc OAM và góc OCM