Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hoành độ giao điểm của (P) và (d) là nghiệm phương trình: \(-\frac{x^2}{4}=x+m\) <=> \(x^2+4x+4m=0\)(1)
Đường thẳng d: y = x + m tiếp xúc với (P) <=> (1) có 1 nghiệm
<=> \(\Delta'=0\)<=> \(4-4m=0\)<=> m = 1
Kết luận:...

Pt hoành độ giao điểm:
\(\frac{1}{2}x^2=-x+m\Leftrightarrow x^2+2x-2m=0\)
\(\Delta'=1+2m>0\Rightarrow m>-\frac{1}{2}\)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1x_2=-2m\end{matrix}\right.\)
\(x_1x_2+y_1y_2=5\)
\(\Leftrightarrow x_1x_2+\frac{1}{4}x_1^2x_2^2=5\)
\(\Leftrightarrow\left(x_1x_2\right)^2+4x_1x_2-20=0\)
\(\Rightarrow\left[{}\begin{matrix}x_1x_2=-2+2\sqrt{6}\\x_1x_2=-2-2\sqrt{6}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2m=-2+2\sqrt{6}\\-2m=-2-2\sqrt{6}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\sqrt{6}-1\\m=\sqrt{6}+1\end{matrix}\right.\)

Phương trình hoành độ giao điểm của (P) và (d) là :
\(x^2=2\left(m+3\right)x-m^2-3.\)
\(\Leftrightarrow x^2-2\left(m+3\right)x+m^2+3=0\left(1\right)\)
\(\Delta'=[-\left(m+3\right)]^2-m^2-3=m^2+6m+9-m^2-3=6m+6\)
Để (d) cắt (P) tại hai điểm phân biệt có hoành độ x1 ; x2 thì phương trình (1) có hai nghiệm phân biệt x1 x2.
\(\Rightarrow\Delta'>0\Leftrightarrow6m+6>0\Leftrightarrow m>-1\)
Theo vi ét ta có:
\(\hept{\begin{cases}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{cases}}\)
Thay vào hệ thức : \(x_1+x_2-\frac{x_1x_2}{x_1+x_2}=\frac{57}{4}\)ta được.
\(2\left(m+3\right)-\frac{m^2+3}{2\left(m+3\right)}=\frac{57}{4}\Leftrightarrow\frac{4\left(m+3\right)^2-m^2-3}{2\left(m+3\right)}=\frac{57}{4}\)
\(\Leftrightarrow\frac{4m^2+24m+36-m^2-3}{2m+6}=\frac{57}{4}\Leftrightarrow\frac{3m^2+24m+33}{2m+6}=\frac{57}{4}\)
\(\Leftrightarrow12m^2+96m+132=114m+342\)\(\Leftrightarrow12m^2-18m-210=0\Leftrightarrow2m^2-3m-35=0\)
\(m_1=5\left(TM\right);m_2=-\frac{7}{2}\left(KTM\right)\)
Vậy \(m=5\).

Phương trình hoành độ giao điểm: \(x^2-\left(2m-1\right)x+m-2=0\)
\(\Delta=\left(2m-1\right)^2-4\left(m-2\right)=\left(2m-2\right)^2+5>0;\forall m\)
\(\Rightarrow\) d luôn cắt (P) tại 2 điểm phân biệt
\(x_1y_1+x_2y_2=0\)
\(\Leftrightarrow x_1.x_1^2+x_2.x_2^2=0\) (do \(y_1=x_1^2;y_2=x_2^2\))
\(\Leftrightarrow x_1^3+x_2^3=0\)
\(\Leftrightarrow x_1^3=-x_2^3\Leftrightarrow x_1=-x_2\)
\(\Leftrightarrow x_1+x_2=0\)
Mà \(x_1+x_2=2m-1\Rightarrow2m-1=0\Rightarrow m=\frac{1}{2}\)

a) (d) cắt (d') khi và chỉ khi 2m+1 \(\ne\) m-1 suy ra m \(\ne\) -2 .Vậy m \(\ne\) -2 thì (d) cắt (d').
b) (d) song song với (d') khi và chỉ khi 2m+1=m-1 và -(2m+3) \(\ne\) m suy ra m=-2 và m \(\ne\) -1.Vậy m=-2 thì (d) song song với (d').

Pt hoành độ giao điểm:
\(x^2-\left(m-2\right)x-m+3=0\)
a/ \(\Delta=\left(m-2\right)^2-4\left(-m+3\right)=m^2-8>0\Rightarrow\left[{}\begin{matrix}m>2\sqrt{2}\\m< -2\sqrt{2}\end{matrix}\right.\)
b/ Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-2\\x_1x_2=-m+3\end{matrix}\right.\)
\(x_1^2+x_2^2=6\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=6\)
\(\Leftrightarrow\left(m-2\right)^2-2\left(-m+3\right)=6\)
\(\Leftrightarrow m^2-2m-8=0\Rightarrow\left[{}\begin{matrix}m=4\\m=-2\left(l\right)\end{matrix}\right.\)
Ta thấy d: y = ( m + 2 ) x – m c ó a = m + 2 v à d ’ : y = − 2 x − 2 m + 1 c ó a ’ = − 2
+) Điều kiện để y = ( m + 2 ) x – m là hàm số bậc nhất m + 2 ≠ 0 ⇔ m ≠ − 2
+) Để d ≡ d ’ ⇔ a = a ' b = b ' ⇔ m + 2 = − 2 − m = − 2 m + 1 ⇔ m = − 4 m = 1 (vô lý)
Vậy không có giá trị nào của m để d ≡ d ’
Đáp án cần chọn là: D