Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A D E B C O x y
Gọi D và E lần lượt là các điểm đối xứng của A qua Ox và Oy . Khi đó ta suy ra AB = BD , AC = CE
Chu vi tam giác ABC : \(AB+BC+AC=DB+BC+CE\ge DE\) (hằng số)
Dấu "=" xảy ra khi D,B,C,E thẳng hàng => B,C lần lượt là giao điểm của DE với Ox và Oy
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ADME là hình chữ nhật có ba góc vuông
b) Ta có ADME là hình chữ nhật nên OD=OM=OA=OE
xét tam giác MHA vuông tại H có OH là đường trung tuyến nên OH=1/2AH=OA nên tam giác AOH cân
c) xét tam giác DHE có trung tuyến HO bằng 1/2 AM=1/2 DE nên tam giác DHE vuông tại H
d) để DE nhỏ nhất thì AM nhỏ nhất mà AM lớn hơn hoặc bằng AH dấu bằng xảy ra khi M trùng H nghĩa là để DE nhỏ nhất thì M là chân đường cao hạ từ A xuông BC
e) tứ giác DMEA có 4 cạnh bằng nhau bằng 1/2 AB=1/2 AC nên DMEA là hình thoi có 1 góc vuông nên là hình vuông
Giải:
Lấy M, N lần lượt là điểm đối xứng với A qua Ox và Oy
Ta có: P(ABC)=AB+AC+BC=BM+BC+CN≥MNP(ABC)=AB+AC+BC=BM+BC+CN≥MN
Dấu bằng xảy ra khi M,B,C,N thẳng hàng
Vậy chu vi tam giác ABC nhỏ nhất khi B,C thuộc MN