Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tự vẽ hình
Ta có Góc xAy Với gócABz là hai góc đồng vị
mà xAy=40độ và theo tính chất nhận biết của hai dường thẳng songsong ta đc:
ABy=40độ
2/ta có xAM=MAy=1/2xAy=20 độ
ABN=NBz=1/2ABz=20độ
=>MAy=ABN=20độ
mà hai góc này ở vị chí sole trong của hai đường thẳng AM và BN do AB cắt
=>AMsongsong Với BN
k giùm nha! ^-^
![](https://rs.olm.vn/images/avt/0.png?1311)
b) Am là tia phân giác của xAy (1)
Bn là tia phân giác của xBz (2)
Mà: góc xAy= góc xBz( cm ý a) (3)
Từ 1 ; 2 và 3
=> góc xAm= góc mAy= góc xBn= góc nBz= góc \(\frac{xAy}{2}\) = góc \(\frac{xBz}{2}\)
Từ góc xAm = góc xBn ( hai góc ở vị trí đồng vị)=> Am//Bn
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1:
a) vì góc xAy và góc xBy là hai góc đồng vị (đều =40độ)
suy ra :Ay // Bz
1.
B A x M y N z
a.Hai góc xBz và xAy là hai góc đồng vị.Nếu \(\widehat{xBz}=40^0\)thì \(\widehat{xBz}=\widehat{xAy}\)nên hai đường thẳng Bz và Ay song song
b. AM,BN lần lượt là tia p/g của góc xAy và xBz nên \(\widehat{xAm}=\frac{1}{2}\widehat{xAy}=20^0,\widehat{xBN}=\frac{1}{2}\widehat{xBz}=20^0\), suy ra \(\widehat{xAM}=\widehat{xBN}\)
Hai góc này ở vị trí đồng vị của hai đường thẳng AM và BN cắt đường thẳng Bx,do đó \(AM//BN\)
2. Câu hỏi của Cao Thi Khanh Chi - Toán lớp 8 - Học toán với OnlineMath
Tham khảo nhé