Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
b: Sửa đề: \(BC\cdot MC=AC^2\)
Xét ΔABM vuông tại A có AC là đường cao
nên \(CB\cdot CM=CA^2\)
c: ΔACM vuông tại C
mà CN là đường trung tuyến
nên NA=NC=NM
Xét ΔNAO và ΔNCO có
NA=NC
NO chung
AO=CO
Do đó: ΔNAO=ΔNCO
=>\(\hat{NAO}=\hat{NCO}\)
=>\(\hat{NCO}=90^0\)
=>NC là tiếp tuyến của (O)
d: Xét (O) có
DC,DB là các tiếp tuyến
Do đó: DC=DB và OD là phân giác của góc BOC
OD là phân giác của góc BOC
=>\(\hat{BOC}=2\cdot\hat{COD}\)
ΔNAO=ΔNCO
=>\(\hat{NOA}=\hat{NOC}\)
=>ON là phân giác của góc COA
=>\(\hat{COA}=2\cdot\hat{CON}\)
Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)
=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)
=>\(2\cdot\hat{NOD}=180^0\)
=>\(\hat{NOD}=90^0\)
e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)
Xét ΔOND vuông tại O có OC là đường cao
nên \(CN\cdot CD=OC^2\)
=>\(NA\cdot BD=OC^2=R^2\)
f: Gọi K là trung điểm của ND
=>K là tâm đường tròn đường kính ND
ΔNOD vuông tại O
mà OK là đường trung tuyến
nên OK=KN=KD
=>K là tâm đường tròn ngoại tiếp ΔNOD
Xét hình thang ABDN có
K,O lần lượt là trung điểm của ND,AB
=>KO là đường trung bình của hình thang ABDN
=>KO//AN//BD
=>KO⊥AB tại O
Xét (K) có
KO là bán kính
AB⊥KO tại O
Do đó: AB là tiếp tuyến của (K)
=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN
g:
\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)
\(BD\cdot AN=R^2\)
=>\(\frac{BD}{R}=\frac{R}{AN}\)
=>\(\frac{BD}{AO}=\frac{BO}{AN}\)
=>\(\frac{BD}{AO}=\frac{BA}{AM}\)
Xét ΔBAD vuông tại B và ΔAMO vuông tại A có
\(\frac{BA}{AM}=\frac{BD}{AO}\)
Do đó: ΔBAD~ΔAMO
=>\(\hat{BAD}=\hat{AMO}\)
mà \(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)
nên \(\hat{AMO}+\hat{MAD}=90^0\)
=>OM⊥AD tại I
h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)
nên AICM là tứ giác nội tiếp đường tròn đường kính AM
mà N là trung điểm của AM
nên A,M,C,I cùng thuộc đường tròn (N)

a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
b: Sửa đề: \(BC\cdot MC=AC^2\)
Xét ΔABM vuông tại A có AC là đường cao
nên \(CB\cdot CM=CA^2\)
c: ΔACM vuông tại C
mà CN là đường trung tuyến
nên NA=NC=NM
Xét ΔNAO và ΔNCO có
NA=NC
NO chung
AO=CO
Do đó: ΔNAO=ΔNCO
=>\(\hat{NAO}=\hat{NCO}\)
=>\(\hat{NCO}=90^0\)
=>NC là tiếp tuyến của (O)
d: Xét (O) có
DC,DB là các tiếp tuyến
Do đó: DC=DB và OD là phân giác của góc BOC
OD là phân giác của góc BOC
=>\(\hat{BOC}=2\cdot\hat{COD}\)
ΔNAO=ΔNCO
=>\(\hat{NOA}=\hat{NOC}\)
=>ON là phân giác của góc COA
=>\(\hat{COA}=2\cdot\hat{CON}\)
Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)
=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)
=>\(2\cdot\hat{NOD}=180^0\)
=>\(\hat{NOD}=90^0\)
e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)
Xét ΔOND vuông tại O có OC là đường cao
nên \(CN\cdot CD=OC^2\)
=>\(NA\cdot BD=OC^2=R^2\)
f: Gọi K là trung điểm của ND
=>K là tâm đường tròn đường kính ND
ΔNOD vuông tại O
mà OK là đường trung tuyến
nên OK=KN=KD
=>K là tâm đường tròn ngoại tiếp ΔNOD
Xét hình thang ABDN có
K,O lần lượt là trung điểm của ND,AB
=>KO là đường trung bình của hình thang ABDN
=>KO//AN//BD
=>KO⊥AB tại O
Xét (K) có
KO là bán kính
AB⊥KO tại O
Do đó: AB là tiếp tuyến của (K)
=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN
g:
\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)
\(BD\cdot AN=R^2\)
=>\(\frac{BD}{R}=\frac{R}{AN}\)
=>\(\frac{BD}{AO}=\frac{BO}{AN}\)
=>\(\frac{BD}{AO}=\frac{BA}{AM}\)
Xét ΔBAD vuông tại B và ΔAMO vuông tại A có
\(\frac{BA}{AM}=\frac{BD}{AO}\)
Do đó: ΔBAD~ΔAMO
=>\(\hat{BAD}=\hat{AMO}\)
mà \(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)
nên \(\hat{AMO}+\hat{MAD}=90^0\)
=>OM⊥AD tại I
h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)
nên AICM là tứ giác nội tiếp đường tròn đường kính AM
mà N là trung điểm của AM
nên A,M,C,I cùng thuộc đường tròn (N)
Giả thiết:
- \(\left(\right. O \left.\right)\) là nửa đường tròn đường kính \(A B\).
- \(A x\) và \(B y\) là các tiếp tuyến với \(\left(\right. O \left.\right)\) tại \(A\) và \(B\).
- \(M\) là điểm bất kỳ trên tia \(A x\).
- \(M B\) cắt \(\left(\right. O \left.\right)\) tại \(C\).
- \(N\) là trung điểm của \(A M\).
- \(N C\) kéo dài cắt \(B y\) tại \(D\).
- \(R\) là bán kính đường tròn \(\left(\right. O \left.\right)\).
a) Chứng minh tam giác \(A C B\) vuông tại \(C\)
Lời giải:
- Vì \(A B\) là đường kính của \(\left(\right. O \left.\right)\), nên theo định lý đường kính, góc \(\hat{A C B} = 90^{\circ}\).
Cụ thể: điểm \(C\) nằm trên đường tròn \(\left(\right. O \left.\right)\) có đường kính \(A B\), nên tam giác \(A C B\) vuông tại \(C\).
b) Chứng minh: \(2 \cdot B C \cdot M C = A C^{2}\)
Phân tích:
- \(M\) nằm trên tia tiếp tuyến \(A x\).
- \(M B\) cắt đường tròn \(\left(\right. O \left.\right)\) tại \(C\).
- Ta cần chứng minh tích đoạn thẳng \(B C\) nhân với \(M C\) nhân 2 bằng bình phương đoạn \(A C\).
Để chứng minh điều này, ta sẽ sử dụng các tính chất về tiếp tuyến, đường kính và tỉ lệ đoạn thẳng trong tam giác, hoặc định lý Ptolemy, hoặc các hệ quả của tiếp tuyến và dây cung.

a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
b: Sửa đề: \(BC\cdot MC=AC^2\)
Xét ΔABM vuông tại A có AC là đường cao
nên \(CB\cdot CM=CA^2\)
c: ΔACM vuông tại C
mà CN là đường trung tuyến
nên NA=NC=NM
Xét ΔNAO và ΔNCO có
NA=NC
NO chung
AO=CO
Do đó: ΔNAO=ΔNCO
=>\(\hat{NAO}=\hat{NCO}\)
=>\(\hat{NCO}=90^0\)
=>NC là tiếp tuyến của (O)
d: Xét (O) có
DC,DB là các tiếp tuyến
Do đó: DC=DB và OD là phân giác của góc BOC
OD là phân giác của góc BOC
=>\(\hat{BOC}=2\cdot\hat{COD}\)
ΔNAO=ΔNCO
=>\(\hat{NOA}=\hat{NOC}\)
=>ON là phân giác của góc COA
=>\(\hat{COA}=2\cdot\hat{CON}\)
Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)
=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)
=>\(2\cdot\hat{NOD}=180^0\)
=>\(\hat{NOD}=90^0\)
e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)
Xét ΔOND vuông tại O có OC là đường cao
nên \(CN\cdot CD=OC^2\)
=>\(NA\cdot BD=OC^2=R^2\)
f: Gọi K là trung điểm của ND
=>K là tâm đường tròn đường kính ND
ΔNOD vuông tại O
mà OK là đường trung tuyến
nên OK=KN=KD
=>K là tâm đường tròn ngoại tiếp ΔNOD
Xét hình thang ABDN có
K,O lần lượt là trung điểm của ND,AB
=>KO là đường trung bình của hình thang ABDN
=>KO//AN//BD
=>KO⊥AB tại O
Xét (K) có
KO là bán kính
AB⊥KO tại O
Do đó: AB là tiếp tuyến của (K)
=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN
g:
\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)
\(BD\cdot AN=R^2\)
=>\(\frac{BD}{R}=\frac{R}{AN}\)
=>\(\frac{BD}{AO}=\frac{BO}{AN}\)
=>\(\frac{BD}{AO}=\frac{BA}{AM}\)
Xét ΔBAD vuông tại B và ΔAMO vuông tại A có
\(\frac{BA}{AM}=\frac{BD}{AO}\)
Do đó: ΔBAD~ΔAMO
=>\(\hat{BAD}=\hat{AMO}\)
mà \(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)
nên \(\hat{AMO}+\hat{MAD}=90^0\)
=>OM⊥AD tại I
h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)
nên AICM là tứ giác nội tiếp đường tròn đường kính AM
mà N là trung điểm của AM
nên A,M,C,I cùng thuộc đường tròn (N)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
b: Sửa đề: \(BC\cdot MC=AC^2\)
Xét ΔABM vuông tại A có AC là đường cao
nên \(CB\cdot CM=CA^2\)
c: ΔACM vuông tại C
mà CN là đường trung tuyến
nên NA=NC=NM
Xét ΔNAO và ΔNCO có
NA=NC
NO chung
AO=CO
Do đó: ΔNAO=ΔNCO
=>\(\hat{NAO}=\hat{NCO}\)
=>\(\hat{NCO}=90^0\)
=>NC là tiếp tuyến của (O)
d: Xét (O) có
DC,DB là các tiếp tuyến
Do đó: DC=DB và OD là phân giác của góc BOC
OD là phân giác của góc BOC
=>\(\hat{BOC}=2\cdot\hat{COD}\)
ΔNAO=ΔNCO
=>\(\hat{NOA}=\hat{NOC}\)
=>ON là phân giác của góc COA
=>\(\hat{COA}=2\cdot\hat{CON}\)
Ta có: \(\hat{BOC}+\hat{COA}=180^0\) (hai góc kề bù)
=>\(2\left(\hat{CON}+\hat{COD}\right)=180^0\)
=>\(2\cdot\hat{NOD}=180^0\)
=>\(\hat{NOD}=90^0\)
e: Sửa đề: Chứng minh \(AN\cdot BD=R^2\)
Xét ΔOND vuông tại O có OC là đường cao
nên \(CN\cdot CD=OC^2\)
=>\(NA\cdot BD=OC^2=R^2\)
f: Gọi K là trung điểm của ND
=>K là tâm đường tròn đường kính ND
ΔNOD vuông tại O
mà OK là đường trung tuyến
nên OK=KN=KD
=>K là tâm đường tròn ngoại tiếp ΔNOD
Xét hình thang ABDN có
K,O lần lượt là trung điểm của ND,AB
=>KO là đường trung bình của hình thang ABDN
=>KO//AN//BD
=>KO⊥AB tại O
Xét (K) có
KO là bán kính
AB⊥KO tại O
Do đó: AB là tiếp tuyến của (K)
=>AB là tiếp tuyến của đường tròn ngoại tiếp ΔODN
g:
\(\frac{BA}{AM}=\frac{2\cdot BO}{2\cdot AN}=\frac{BO}{AN}\)
\(BD\cdot AN=R^2\)
=>\(\frac{BD}{R}=\frac{R}{AN}\)
=>\(\frac{BD}{AO}=\frac{BO}{AN}\)
=>\(\frac{BD}{AO}=\frac{BA}{AM}\)
Xét ΔBAD vuông tại B và ΔAMO vuông tại A có
\(\frac{BA}{AM}=\frac{BD}{AO}\)
Do đó: ΔBAD~ΔAMO
=>\(\hat{BAD}=\hat{AMO}\)
mà \(\hat{BAD}+\hat{MAD}=\hat{BAM}=90^0\)
nên \(\hat{AMO}+\hat{MAD}=90^0\)
=>OM⊥AD tại I
h: xét tứ giác AICM có \(\hat{AIM}=\hat{ACM}=90^0\)
nên AICM là tứ giác nội tiếp đường tròn đường kính AM
mà N là trung điểm của AM
nên A,M,C,I cùng thuộc đường tròn (N)

a: Gọi I là trung điểm của OA
=>I là tâm đường tròn đường kính OA
Xét (I) có
ΔADO nội tiếp
AO là đường kính
Do đó: ΔADO vuông tại D
Xét tứ giác ADHC có \(\hat{ADC}=\hat{AHC}=90^0\)
nên ADHC là tứ giác nội tiếp
b: ADHC là tứ giác nội tiếp
=>\(\hat{ODH}=\hat{OAC}\) (hai góc nội tiếp cùng chắn cung CH)
mà \(\hat{OAC}=\hat{OCA}\) (ΔOAC cân tại O)
nên \(\hat{ODH}=\hat{OCA}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AC//DH
Giải phần (a): Chứng minh A, C, D, H đồng viên
- Cách tiếp cận: Ta sẽ sử dụng định lý đường kính của đường tròn, định lý tứ giác nội tiếp và một số tính chất hình học.
- Bước 1: Tính chất đường tròn
- Cho đường tròn \(\left(\right. O \left.\right)\) có đường kính \(A B\), với điểm \(C\) nằm trên đường tròn \(\left(\right. O \left.\right)\). Do \(A B\) là đường kính, ta có \(\angle A C B = 90^{\circ}\) (theo định lý góc vuông tại điểm trên đường tròn có đường kính là cạnh huyền).
- Bước 2: Định lý tứ giác nội tiếp
- Vì \(D\) là giao điểm của \(O C\) và đường tròn \(\left(\right. O \left.\right)\), ta có \(D\) nằm trên đường tròn. Như vậy, tứ giác \(A C D H\) có các điểm \(A\), \(C\), \(D\), và \(H\) nằm trên một đường tròn.
- Cụ thể, ta có tứ giác \(A C D H\) là tứ giác nội tiếp đường tròn \(\left(\right. O \left.\right)\) vì tổng các góc đối diện trong tứ giác này bằng 180° (theo định lý tứ giác nội tiếp).
Kết luận (a): Tứ giác \(A C D H\) là tứ giác nội tiếp nên các điểm \(A , C , D , H\) đồng viên.
Giải phần (b): Chứng minh \(H D \parallel A C\)
- Cách tiếp cận: Ta sử dụng định lý góc vuông và các tính chất của các đoạn thẳng vuông góc.
- Bước 1: Tính chất của các đoạn vuông góc
- \(C H \bot A B\) tại \(H\), tức là \(C H\) vuông góc với \(A B\), nên ta có \(\angle C H B = 90^{\circ}\).
- Bước 2: Chứng minh góc tương ứng
- Xét tam giác \(A C B\) với \(\angle A C B = 90^{\circ}\), do đó \(A C\) là một cạnh góc vuông của tam giác vuông \(A C B\).
- Xét các góc tại điểm \(D\) trên đường tròn: ta có \(\angle C D A = \angle C B A\) (góc nội tiếp cùng chắn một cung của đường tròn). Vì vậy, \(\angle C D A = \angle C B A\).
- Bước 3: So sánh các góc vuông
- Ta có \(\angle C H B = 90^{\circ}\) (do \(C H \bot A B\)), và \(\angle C D A = \angle C B A\).
- Từ đó suy ra, \(\angle H D C = \angle A C B\), và góc này là một góc vuông.
- Bước 4: Kết luận
- Vì \(\angle H D C = \angle A C B\) và \(\angle C H B = 90^{\circ}\), ta có thể suy ra rằng \(H D \parallel A C\)(theo định lý về góc đồng vị trong các đường thẳng song song).
Kết luận (b): \(H D \parallel A C\).
Tổng kết:
- (a) A, C, D, H đồng viên vì tứ giác \(A C D H\) là tứ giác nội tiếp đường tròn.
- (b) \(H D \parallel A C\) do các

Ta có:
\(\sqrt{2016a+\frac{\left(b-c\right)^2}{2}}=\sqrt{2016a+\frac{b^2-2bc+c^2}{2}}=\sqrt{2016a+\frac{b^2+2bc+c^2-4bc}{2}}\)
\(=\sqrt{2016a+\frac{\left(b+c\right)^2-4bc}{2}}=\sqrt{2016a+\frac{\left(b+c\right)^2}{2}-2bc}\)
\(\le\sqrt{2016a+\frac{\left(b+c\right)^2}{2}}\left(b,c\ge0\right)=\sqrt{2016a+\frac{\left(a+b+c-a\right)^2}{2}}\)
\(=\sqrt{2016a+\frac{\left(1008-a\right)^2}{2}}=\sqrt{\frac{\left(1008+a\right)^2}{2}}=\frac{1008+a}{\sqrt{2}}\left(a\ge0\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{2016b+\frac{\left(c-a\right)^2}{2}}\le\frac{1008+b}{\sqrt{2}};\sqrt{2016c+\frac{\left(a-b\right)^2}{2}}\le\frac{1008+c}{\sqrt{2}}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{3\cdot1008+\left(a+b+c\right)}{\sqrt{2}}=\frac{4\cdot1008}{\sqrt{2}}=2016\sqrt{2}\)

Bài 1:
a: Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
Suy ra: \(\widehat{ABO}=\widehat{ACO}=90^0\)
hay AC là tiếp tuyến của (O)
b: Xét (O) có
OI là một phần đường kính
CE là dây
OI⊥CE tại I
Do đó: I là trung điểm của CE
Xét ΔDCE có
DI là đường cao
DI là đường trung tuyến
Do đó: ΔDCE cân tại D
Xét ΔOED và ΔOCD có
OE=OC
ED=CD
OD chung
Do đó: ΔOED=ΔOCD
Suy ra: \(\widehat{OED}=\widehat{OCD}=90^0\)
hay DE là tiếp tuyến của (O)
a, Dựng đường thẳng d là trung trực của AB, d cắt tia Ay tại O suy ra (O;OA) là đường tròn cần dựng.
HS tự chứng minh
b, Tính được: OA = 3 2 3 cm