![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\frac{a}{12}=\frac{b}{9}=\frac{c}{5}\)
Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=12k\\b=9k\\c=5k\end{cases}}\)
Ta có \(abc=12k\cdot9k\cdot5k=20\)
\(\Rightarrow540k^3=20\)
\(\Rightarrow k^3=\frac{20}{540}=\frac{1}{27}\)
\(\Rightarrow k=\frac{1}{3}\)
Với \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}a=\frac{1}{3}\cdot12=4\\b=\frac{1}{3}\cdot9=3\\c=5\cdot\frac{1}{3}=\frac{5}{3}\end{cases}}\)
a) Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\)
\(\rightarrow a=12k,b=9k,c=5k\)
Ta có: \(abc=20\)
\(\rightarrow12k\cdot9k\cdot5k=20\)
\(\rightarrow540\cdot k^3=20\rightarrow k^3=\frac{1}{27}\)
\(\rightarrow k^3=\left(\frac{1}{3}\right)^3\rightarrow k=\frac{1}{3}\)
\(a=12k\rightarrow a=12\cdot\frac{1}{3}=4\)
\(b=9k\rightarrow b=9\cdot\frac{1}{3}=3\)
\(c=5k\rightarrow c=5\cdot\frac{1}{3}=\frac{5}{3}\)
Vậy \(a=4,b=3,c=\frac{5}{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\left(k\in Z\right)\)
\(\Rightarrow a=12k;b=9k;c=5k\)
\(\Rightarrow a.b.c=540k^3=20\)
\(\Rightarrow k^3=\frac{1}{27}\Rightarrow k=\frac{1}{3}\)
\(\Rightarrow a=4;b=3;c=\frac{5}{3}\)
#)Giải :
Đặt \(\frac{a}{12}=\frac{b}{9}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=12k\\b=9k\\c=5k\end{cases}\Rightarrow a.b.c=12k.9k.5k=540k^3=20\Rightarrow k^3=\frac{1}{27}\Rightarrow k=\frac{1}{3}}\)
\(\Rightarrow\hept{\begin{cases}\frac{a}{12}=\frac{1}{3}\\\frac{b}{9}=\frac{1}{3}\\\frac{c}{5}=\frac{1}{3}\end{cases}\Rightarrow\hept{\begin{cases}a=4\\b=3\\c=\frac{5}{3}\end{cases}}}\)
Vậy ...
![](https://rs.olm.vn/images/avt/0.png?1311)
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x+y-z}{5+4-3}=\dfrac{18}{6}=3\)
Do đó: x=15; y=12; z=9
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{5}=\dfrac{b}{4}=\dfrac{c}{7}=\dfrac{a+2b+c}{5+2\cdot4+7}=\dfrac{10}{20}=\dfrac{1}{2}\)
Do đó: a=5/2; b=2; c=7/2
e: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{4}=\dfrac{b}{5}=\dfrac{c}{2}=\dfrac{a+b}{4+5}=\dfrac{10}{9}\)
Do đó: a=40/9; b=50/9; c=20/9
f: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{2a+b-c}{2\cdot2+3-4}=\dfrac{-12}{3}=-4\)
Do đó: a=-8; b=-12; c=-16
![](https://rs.olm.vn/images/avt/0.png?1311)
ta có: 2xx=3y=>x/3=y/2=>x/21=y/14 ; x/7=z/5=>x/21=z/15 =>x/21=y/14=z/15=>3x/63=7y/98=5z/75 ADTCDTSBN ta có 3x/63=7y/98=5z /75=3x-7y+5z=40/63-98+75=40=1 3x=1.63=63 =>x=21 ;7y=1.98=98=>y=14 ; 5z=1.75=>z=15
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}=k\)
\(\Rightarrow\hept{\begin{cases}a=2k+1\\b=3k-2\\c=4k+3\end{cases}}\)thay vào \(3a-2b+c=-46\)
\(\Rightarrow3\left(2k+1\right)-2\left(3k-2\right)+4k+3=-46\)
\(\Leftrightarrow6k+3-\left(6k-4\right)+4k+3=-46\)
\(\Leftrightarrow4k+10=-46\Rightarrow4k=-56\Rightarrow k=-14\)
\(\Rightarrow\hept{\begin{cases}a=2.\left(-14\right)+1=-27\\b=3.\left(-14\right)-2=-44\\c=4.\left(-14\right)+3=-53\end{cases}}\)
Vậy \(a=-27;b=-44;c=-53\)
b) \(\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\left(1\right)\)
\(\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}\)
\(\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
\(\Rightarrow\hept{\begin{cases}a=12.6=72\\b=12.15=180\\c=12.20=240\end{cases}}\)
Vậy \(a=72;b=180;c=240\)
a, \(\frac{a-1}{2}=\frac{b+2}{3}=\frac{c-3}{4}\)
\(\Rightarrow\frac{3a-3}{6}=\frac{2b+4}{6}=\frac{c-3}{4}=\frac{3a-3-2b-4+c-3}{6-6+4}=\frac{\left(3a-2b+c\right)-\left(3+4+3\right)}{4}=\frac{-46-10}{4}=-14\)
=> \(\hept{\begin{cases}\frac{a-1}{2}=-14\\\frac{b+2}{3}=-14\\\frac{c-3}{4}=-14\end{cases}}\Rightarrow\hept{\begin{cases}a=-27\\b=-44\\c=-53\end{cases}}\)
b) \(\hept{\begin{cases}\frac{a}{2}=\frac{b}{5}\Rightarrow\frac{a}{6}=\frac{b}{15}\\\frac{b}{3}=\frac{c}{4}\Rightarrow\frac{b}{15}=\frac{c}{20}\end{cases}\Rightarrow\frac{a}{6}=\frac{b}{15}=\frac{c}{20}}=\frac{a+b-c}{6+15-20}=\frac{12}{1}=12\)
=> a = 72, b=180, c=240
a=120
b=50
c=90
bạn thử lại nhé!