Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
mày bị điên đứa nào thích thì mà đứa nào chơi truy kích cho tao nick
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét hiệu \(\left(a_1+a_2+a_3\right)\left(b_1+b_2+b_3\right)-3\left(a_1b_1+a_2b_2+a_3b_3\right)\)
\(=a_1\left(b_1+b_2+b_3\right)+a_2\left(b_1+b_2+b_3\right)+a_3\left(b_1+b_2+b_3\right)-3a_1b_1-3a_2b_2-3a_3b_3\)
\(=a_1\left(b_1+b_2+b_3-3b_1\right)+a_2\left(b_1+b_2+b_3-3b_2\right)+a_3\left(b_1+b_2+b_3-3b_3\right)\)
\(=a_1\left(b_2+b_3-2b_1\right)+a_2\left(b_1+b_3-2b_2\right)+a_3\left(b_1+b_2-2b_3\right)\)
\(=a_1\left[\left(b_2-b_1\right)-\left(b_1-b_3\right)\right]+a_2\left[\left(b_3-b_2\right)-\left(b_2-b_1\right)\right]+a_3\left[\left(b_1-b_3\right)-\left(b_3-b_2\right)\right]\)
\(=a_1\left(b_2-b_1\right)-a_1\left(b_1-b_3\right)+a_2\left(b_3-b_2\right)-a_2\left(b_2-b_1\right)+a_3\left(b_1-b_3\right)-a_3\left(b_3-b_2\right)\)
\(=\left(a_1-a_2\right)\left(b_2-b_1\right)+\left(a_3-a_1\right)\left(b_1-b_3\right)+\left(a_2-a_3\right)\left(b_3-b_2\right)\)
Do giả thiết nên dễ thấy từng số hạng trên đều nhỏ hơn 0 nên tổng nhỏ hơn 0
=> ĐPCM
Dấu "=" khi \(\hept{\begin{cases}a_1=a_2=a_3\\b_1=b_2=b_3\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
nếu đã cho lai-bil=6 thì la1-b1l+...+la999-b999l có tận cùng là 4 chứ
Hướng giải như này: Giả sử có k cặp ai bi có giá trị tuyệt đối của hiệu bằng 6. Khi đó tổng đã cho bằng 6k+999-k=5k+999
Mình đang cần chứng minh k chẵn.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a_n=\frac{2}{\left(2n+1\right)\left(\sqrt{n}+\sqrt{n+1}\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{\left(2n+1\right)\left(n+1-n\right)}=\frac{2\left(\sqrt{n+1}-\sqrt{n}\right)}{n+n+1}\)
\(< \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
\(a_1+a_2+a_3+...+a_{2009}< 1-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...-\frac{1}{\sqrt{2010}}=1-\frac{1}{\sqrt{2010}}< \frac{2008}{2010}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(f\left(x\right)=\left(a_1x-b_1\right)^2+...+\left(a_nx-b_n\right)^2\)
\(\Rightarrow f\left(x\right)\ge0\) với mọi x
Mặt khác : \(f\left(x\right)=\left(a_1^2+...+a_n^2\right)x^2-2\left(a_1b_1+...+a_nb_n\right)x+\left(b_1^2+...+b_n^2\right)\)
\(\Rightarrow\Delta'\le0\)
\(\Rightarrow\left(a_1b_1+...+a_nb_n\right)^2\le\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_n^2\right)\)
\(\Rightarrow\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_{1^{ }}^2+...+b_n^2\right)}\)
Áp dụng bđt bunhia copski, ta có \(\left(a_1b_1+...+a_nb_n\right)^2\le\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)\Leftrightarrow\sqrt{\left(a_1b_1+...+a_nb_n\right)^2}\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\Leftrightarrow\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\)
Dấu bằng xảy ra khi \(\dfrac{a_1}{b_1}=...=\dfrac{a_n}{b_n}\)
Vậy \(\left|a_1b_1+...+a_nb_n\right|\le\sqrt{\left(a_1^2+...+a_n^2\right)\left(b_1^2+...+b_2^2\right)}\)