K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: loading...

2:Sửa đề: Gọi A là giao điểm của (d) với (d')

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=-x+2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=0\\y=-0+2=2\end{matrix}\right.\)

Tọa độ C là

\(\left\{{}\begin{matrix}x=0\\y=2\cdot x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=2\cdot0-4=-4\end{matrix}\right.\)

Vậy: C(0;-4); B(0;2)

Tọa độ A là:

\(\left\{{}\begin{matrix}-x+2=2x-4\\y=2x-4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-3x=-6\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\cdot2-4=0\end{matrix}\right.\)

Vậy: A(2;0)

A(2;0); B(0;2) C(0;-4)

\(AB=\sqrt{\left(0-2\right)^2+\left(2-0\right)^2}=\sqrt{2^2+2^2}=\sqrt{8}=2\sqrt{2}\)

\(AC=\sqrt{\left(0-2\right)^2+\left(-4-0\right)^2}=\sqrt{2^2+4^2}=2\sqrt{5}\)

\(BC=\sqrt{\left(0-0\right)^2+\left(-4-2\right)^2}=6\)

Xét ΔABC có 

\(cosBAC=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)

\(=\dfrac{8+20-36}{2\cdot2\sqrt{2}\cdot2\sqrt{5}}=\dfrac{-\sqrt{10}}{10}\)

=>\(sinBAC=\sqrt{1-cos^2BAC}=\sqrt{1-\dfrac{1}{10}}=\sqrt{\dfrac{9}{10}}=\dfrac{3}{\sqrt{10}}\)

Diện tích tam giác ABC là:

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC\cdot sinBAC\)

\(=\dfrac{1}{2}\cdot2\sqrt{2}\cdot2\sqrt{5}\cdot\dfrac{3}{\sqrt{10}}=6\)

20 tháng 12 2021

jdhjdhshfsjsxhxhxx                  udjdghxhjxhg

20 tháng 12 2021

sao dạo này toàn người cho toán lớp 9 nhỉ khó qué

 

a: loading...

b: PTHĐGĐ là:

x^2+x-2=0

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

=>y=4 hoặc y=1

aloading...

b:

PTHĐGĐ là:

x^2+x-2=0

=>(x+2)(x-1)=0

=>x=-2 hoặc x=1

=>y=4 hoặc y=1

14 tháng 12 2023

a:

loading...

b: Tọa độ điểm Q là:

\(\left\{{}\begin{matrix}2x-4=-x+4\\y=-x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=8\\y=-x+4\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{8}{3}\\y=-\dfrac{8}{3}+4=\dfrac{4}{3}\end{matrix}\right.\)

Vậy: \(Q\left(\dfrac{8}{3};\dfrac{4}{3}\right)\)

Tọa độ M là:

\(\left\{{}\begin{matrix}x=0\\y=2x-4=2\cdot0-4=-4\end{matrix}\right.\)

Vậy: M(0;-4)

Tọa độ N là:

\(\left\{{}\begin{matrix}x=0\\y=-x+4=-0+4=4\end{matrix}\right.\)

vậy: N(0;4)

Q(8/3;4/3); M(0;-4); N(0;4)

\(QM=\sqrt{\left(0-\dfrac{8}{3}\right)^2+\left(-4-\dfrac{4}{3}\right)^2}=\dfrac{8\sqrt{5}}{3}\)

\(QN=\sqrt{\left(0-\dfrac{8}{3}\right)^2+\left(4-\dfrac{4}{3}\right)^2}=\dfrac{8\sqrt{2}}{3}\)

\(MN=\sqrt{\left(0-0\right)^2+\left(4+4\right)^2}=8\)

Xét ΔMNQ có 

\(cosMQN=\dfrac{QM^2+QN^2-MN^2}{2\cdot QM\cdot QN}=\dfrac{-1}{\sqrt{10}}\)

=>\(\widehat{MQN}\simeq108^026'\)

\(sinMQN=\sqrt{1-cos^2MQN}=\dfrac{3}{\sqrt{10}}\)

Diện tích tam giác MQN là:

\(S_{MQN}=\dfrac{1}{2}\cdot QM\cdot QN\cdot sinMQN\)

\(=\dfrac{1}{2}\cdot\dfrac{3}{\sqrt{10}}\cdot\dfrac{8\sqrt{5}}{3}\cdot\dfrac{8\sqrt{2}}{3}=\dfrac{32}{3}\)

 

19 tháng 11 2023

a: 

loading...

b:

Sửa đề: Tính diện tích tam giác ABO

tọa độ A là:

\(\left\{{}\begin{matrix}y=0\\x+2=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)

Vậy: A(-2;0)

Tọa độ B là:

\(\left\{{}\begin{matrix}x=0\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0+2=2\end{matrix}\right.\)

Vậy: B(0;2)

O(0;0) A(-2;0); B(0;2)

\(OA=\sqrt{\left(-2-0\right)^2+\left(0-0\right)^2}=\sqrt{4}=2\)

\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=\sqrt{4}=2\)

\(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)

Vì \(OA^2+OB^2=AB^2\)

nên ΔOAB vuông tại O

=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\)

c: Sửa đề: Tính góc tạo bởi đường thẳng với trục ox

Gọi \(\alpha\) là góc tạo bởi đường thẳng y=x+2 với trục Ox

\(tan\alpha=a=1\)

=>\(\alpha=45^0\)