K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2023

a: PM\(\perp\)MQ

MQ\(\perp\)AB

Do đó: PM//AB

Xét tứ giác PMIO có

IO//MP

\(\widehat{PMI}=90^0\)

Do đó: PMIO là hình thang vuông

b: ΔMPQ vuông tại M

=>ΔMPQ nội tiếp đường tròn đường kính PQ

mà ΔMPQ nội tiếp (O)

nên O là trung điểm của PQ

=>P,Q,O thẳng hàng

c: ΔAOC vuông tại O

=>\(OA^2+OC^2=AC^2\)

=>\(R^2+R^2=\left(a\sqrt{2}\right)^2=2a^2\)

=>\(R=a\)

Kẻ OH\(\perp\)AC

=>d(O;AC)=OH

Xét ΔOAC vuông tại O có OH là đường cao

nên \(OH\cdot AC=OA\cdot OC\)

=>\(OH\cdot a\sqrt{2}=a\cdot a=a^2\)

=>\(OH=\dfrac{a}{\sqrt{2}}\)

Vậy: Khoảng cách từ O đến AC là \(\dfrac{a\sqrt{2}}{2}\)

25 tháng 3 2017

infilyti + infilyty = infility

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AMa) Chứng minh AB = BCb) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyếnMC với đường tròn (C là tiếp điểm).a) Chứng minh OM // BCb) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hànhc) Chứng minh...
Đọc tiếp

1. Cho đường tròn (O), đường kính AB, dây AM. Kéo dài AM một đoạn MC = AM
a) Chứng minh AB = BC
b) Gọi N là trung điểm BC. Chứng minh tứ giác BOMN là hình thoi.
2. Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).
a) Chứng minh OM // BC
b) Từ O vẽ đường thẳng vuông góc AB cắt BC tại N. Chứng minh BOMN là hình bình hành
c) Chứng minh COMN là hình thang cân
3.Cho đường tròn (O), đường kính AB, tiếp tuyến Ax. Trên Ax lấy điểm M, vẽ tiếp tuyến
MC với đường tròn (C là tiếp điểm).Kẻ CH vuông góc với AB tại H
a) Chứng minh CA là phân giác góc HCM
b) Kẻ CH vuông góc Ax tại K, gọi I là giao điểm của AC và HK. Chứng minh tam giác AIO vuông
c) Chứng minh 3 điểm M, I, O thẳng hàng

0