Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình không vẽ hình được mong bạn thông cảm
a, Vì tứ giác MANB nội tiếp
=>\(IN.IM=IA.IB=IA^2\)(I là trung điểm của AB)
Vậy IN.IM=IA^2
b,
VÌ AB là tiếp tuyến chắn cung AP của đường tròn O'
=>PAB=AMP
MÀ AMP=ABN (tứ giác AMBN nội tiếp)
=>PAB=ABN
MÀ I là trung điểm của AB
=> I là trung điểm của NP
=> tứ giác ANBP là hình bình hành
Vậy tứ giác ANBP là hình bình hành
c,Vì tứ giác ANBP là hình bình hành
nên \(AN//BP\)
=>NAB=ABP
Lại có NAB=NMB( tứ giác AMBN nội tiếp)
=>ABP=NMB
=> IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP
Vậy IB là tiếp tuyến của đường tròn ngoại tiếp tam giác MBP
d,Từ G kẻ GK,GH lần lượt song song với AP,BP(\(K,H\in AB\))
=> \(\hept{\begin{cases}IK=\frac{1}{3}IA\\IH=\frac{1}{3}IB\end{cases}}\)và KGH=APB
MÀ I,A,B cố định
=> H,K cố định
Ta có APB=KGH
Mà APB =ANB( tứ giác ANBP là hbh)
=> KGH=ANB
MÀ AB cố định ,ANB là góc nội tiếp chắn cung AB =
=> ANB không đổi => KGH không đổi
MÀ K,H cố định
=> G thuộc cung tròn cố định
Vậy khi M di chuyển thì G thuộc cung tròn cố định
![](https://rs.olm.vn/images/avt/0.png?1311)
c.
Tứ giác IKNC là tứ giác nội tiếp (cmt)=> \(\widehat{IKC}=\widehat{INC}\)(cùng = \(\frac{1}{2}sđ\widebat{IC}\))
Xét đt(O) có: \(\widehat{ABC}=\widehat{ANC=}\widehat{INC}\)(cùng = \(\frac{1}{2}sđ\widebat{NC}\))
=> \(\widehat{ABC}=\widehat{IKC}\)mà 2 góc này ở vị trí đồng vị => IK // HB (dhnb)
Chứng minh tương tự câu a ta có: Tứ giác AMHI là tứ giác nội tiếp => \(\widehat{AHI}=\widehat{AMI}=\widehat{AMC}\)(cùng = \(\frac{1}{2}sđ\widebat{AI}\))
Xét đt(O) có: \(\widehat{ABC}=\widehat{AMC}\left(=\frac{1}{2}sđ\widebat{AC}\right)\)=> \(\widehat{ABC}=\widehat{AHI}\)mà 2 góc này ở vị trí đồng vị => HI // BK
Vì M là điểm chính giữa cung nhỏ \(\widebat{AB}\)(gt) => \(sđ\widebat{AM}=sđ\widebat{BM}\)
Xét đt(O) có: \(\widehat{ACM}=\frac{1}{2}sđ\widebat{AM}\)và \(\widehat{BCM}=\frac{1}{2}sđ\widebat{BM}\)=> \(\widehat{ACM}=\widehat{BCM}\)=> CM là tia phân giác của \(\widehat{ACB}\)
CMTT ta có: AN là tia phân giác của \(\widehat{BAC}\)
Mà 2 dây AN và CM cắt nhau tại I (gt) => BI là tia phân giác của \(\widehat{ABC}\)hay BI là tia phân giác của \(\widehat{HBK}\)
Xét tứ giác BHIK có:
* HI // BK (cmt)
* IK // HB (cmt)
=> tứ giác BHIK là hình bình hành (DHNB)
Mà BI là phân giác của \(\widehat{HBK}\)(cmt) => tứ giác BHIK là hình thoi (dhnb hình thoi)
d. Vì \(\widehat{NBK}=\widehat{BMN}=\widehat{BMK}\left(cmt\right)\)=> BN là tiếp tuyến tại B của đt (P) ngoại tiếp \(\Delta MBK\)=> \(BN\perp BP\)Mà \(BN\perp BD\)do \(\widehat{DBN}=90^o\)(góc nội tiếp chắn nửa đt) => B, P , D thẳng hàng
Tương tự ta có: C, Q, D thẳng hàng
\(\Delta BPK\)và \(\Delta DBC\)là 2 tam giác cân có chung góc ở đáy => góc ở đỉnh của chúng bằng nhau => \(\widehat{BPK}=\widehat{BDC}\)Mà 2 góc này ở vị trí đồng vị => PK // DC (dhnb) => PK // DQ
CMTT ta có: DP // QK => DPKQ là hình bình hành (dhnb HBH) => DK đi qua trung điểm của PQ => D, E, K thẳng hàng (đpcm)
a. Vì M là điểm chính giữa cung nhỏ \(\widebat{AB}\)(gt) => \(sđ\widebat{AM}=sđ\widebat{MB}\)=> \(\widehat{ACM}=\widehat{BCM}\)(2 góc nội tiếp chắn 2 cung = nhau)
Lại có: \(\widehat{ACM}=\widehat{ANM}\)(CÙNG = \(\frac{1}{2}sđ\widebat{AM}\)) => \(\widehat{MNA}=\widehat{BCM}\)hay \(\widehat{KNI}=\widehat{KCI}\)(Do M,K,N và A,I,N => \(\widehat{MNA}=\widehat{KNI}\); M,I,C và B,K,C => \(\widehat{BCM}=\widehat{KCI}\)) => IKNC là tứ giác nội tiếp (Dấu hiệu nhận biết)
b. Xét đường tròn (O) có: \(\widehat{BMN}=\frac{1}{2}sđ\widebat{BN}\)và \(\widehat{NBC}=\widehat{NBK}=\frac{1}{2}sđ\widebat{NC}\)
mà N là điểm chính giữa cung nhỏ \(\widebat{BC}\)(gt) => sđ \(\widebat{BN}\)= sđ \(\widebat{NC}\)=> \(\widehat{BMN}=\widehat{NBK}\)
Xét \(\Delta BMN\)và \(\Delta KBN\)có:
* \(\widehat{N}\)chung
* \(\widehat{BMN}=\widehat{NBK}\)(cmt)
=> \(\Delta BMN~\Delta KBN\)(g.g) => \(\frac{NB}{NK}=\frac{NM}{NB}\)<=> \(NB^2=NK.NM\)(đpcm)
![](https://rs.olm.vn/images/avt/0.png?1311)