Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đề không nói rõ là đoạn thẳng OC cắt đường tròn hay đường thẳng OC. Vì nếu là đường thăng thì sẽ có hai điểm D. Ta coi D là giao điểm của đoạn thẳng OC với đường tròn, nếu D là giao của tia đối của tia OC với đường tròn thì chỉ việc cộng thêm 2R.
Tam giác OAB có \(OA=OB=AB=R\to\Delta OAB\) đều. Suy ra \(\angle OBA=60^{\circ}.\) Do \(BC=BA=OB=R\to\Delta BCO\) cân ở B. Vậy theo tính chất góc ngoài tam giác \(\angle OBA=\angle BOC+\angle BCO=2\angle BCO\to\angle BCO=\frac{60^{\circ}}{2}=30^{\circ}.\) Vậy góc ACD bằng 30 độ.
Kẻ OH vuông góc với AB. Vì tam giác OAB đều nên \(OH=\frac{\sqrt{3}}{2}AB=\frac{\sqrt{3}}{2}R=\frac{3\sqrt{3}}{2}.\) Tam giác OHC vuông ở H có góc đỉnh C bằng 30 độ nên \(OH=\frac{1}{2}OC\to OC=2\times\frac{3\sqrt{3}}{2}=3\sqrt{3}.\) Mà \(OD=R=3\to CD=OC-OD=3\sqrt{3}-3.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án:
a) góc ACD = 60o60o
b) CD=3+3√3
Giải thích các bước giải:
a) Vì AB=OA=OB nên tam giác OAB là tam giác đều
⇒ góc OAB=góc OBA= 60o60o
⇒ góc OBC=180o180o -60o60o=120o120o
Xét tam giác OBC có OC=AB=OB ⇒ tam giác OBC cân tại B
⇒ góc BOC= góc BCO
Mà góc BOC+góc BCO=180o180o -120o120o=60o60o
⇒ góc BCO hay góc ACD bằng 60o60o
b) Kẻ OH ⊥AB
ta có: OH= 3√323√32
HC=HB+BC= 3232 +3=9292
⇒ OC= 2√OH2+HC2OH2+HC22 =3√3
⇒ CD=CO+OC=3+3√3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) vì AD là tia phân giác \(\widehat{BAC}\)
\(\Rightarrow\widehat{BAD}=\widehat{DAC}\)\(\Rightarrow\)D là điểm chính giữa BC
\(\Rightarrow OD\perp BC\)
Mà \(DE\perp OD\)
\(\Rightarrow BC//DE\)
b) Ta có : \(\widehat{DAC}=\widehat{DCI}=\frac{1}{2}sđ\widebat{CD}\)
\(\Rightarrow\widehat{KAD}=\widehat{KCI}\)
suy ra tứ giác ACIK nội tiếp
c) OD cắt BC tại H
Dễ thấy H là trung điểm BC nên HC = \(\frac{BC}{2}=\frac{\sqrt{3}}{2}R\)
Xét \(\Delta OHC\)vuông tại H có :
\(HC=OC.\sin\widehat{HOC}\Rightarrow\sin\widehat{HOC}=\frac{HC}{OC}=\frac{\frac{\sqrt{3}}{2}R}{R}=\frac{\sqrt{3}}{2}\)
\(\Rightarrow\widehat{HOC}=60^o\)
\(\Rightarrow\widehat{BOC}=120^o\)
\(\Rightarrow\widebat{BC}=120^o\)
P/s : câu cuối là tính số đo cung nhỏ BC mà sao có cái theo R. mình ko hiểu. thôi thì bạn cứ xem đi nha.
![](https://rs.olm.vn/images/avt/0.png?1311)
có sđ AB = sđ BC = sđ CD
mà BIC = 1/2 ( sđ AD - sđ BC ) =1/2 ( sđ BD - sđ AB -sđ BC )
BKD = 1/2 ( sđ BD - sđ BC-sđ CD )
nên BIC=BKD
b,KBC = CDB ( góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung CD)
mà CDB = CBD ( BC = CD )
nên KBC = CBD => BC là tia pg của KBD
A)
Vì góc BIC có đỉnh nằm ngoài đường tròn
nên: góc BIC = \(\dfrac{sđAD-sđBC}{2}\)
Mà: sđAD = \(\dfrac{sđBD+sđAB}{2}\) ; sđBC = sđ AB = sđCD
=> góc BIC = \(\dfrac{sđBD+sđAB-sđAB}{2}\) = \(\dfrac{sđBD}{2}\) (1)
Ta có: góc BKD = \(\dfrac{sđBD}{2}\) (2)
từ (1) và (2) => góc BIC = góc BKD
B)
Vì góc KBC và góc BDC cùng chắn cung BC
=> góc KBC = góc BDC (góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung )
Ta có: sđBC = sđCD (gt)
nên: góc BDC = góc DBC (hai góc nội tiếp chắn hai cung bằng nhau)
Vậy góc KBC = góc DBC (cùng bằng góc BDC)
hay: BC là tia phân giác của góc DBK