K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác OBAC có \(\hat{OBA}+\hat{OCA}=90^0+90^0=180^0\)

nên OBAC là tứ giác nội tiếp đường tròn đường kính OA

=>O,B,A,C cùng thuộc đường tròn đường kính OA

ta có: OI+IA=OA

=>IA=OA-OI=2R-R=R

=>OI=IA

=>I là trung điểm của OA

=>Tâm của đường tròn chứa bốn điểm O,A,B,C là I

b:

Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AO là phân giác của góc BAC

ta có; OK⊥OB

OB⊥BA

Do đó: OK//BA

=>\(\hat{KOA}=\hat{BAO}\) (hai góc so le trong)

\(\hat{BAO}=\hat{KAO}\) (AO là phân giác của góc BAC)

nên \(\hat{KOA}=\hat{KAO}\)

=>ΔKOA cân tại K

c: ΔKOA cân tại K

mà KI là đường trung tuyến

nên KI⊥OA tại I

=>KI⊥OI tại I

=>KI là tiếp tuyến của (O)