Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có
AB,AC là các tiếp tuyến
Do đó: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
=>O nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra OA là đường trung trực của BC
=>OA⊥BC tại H và H là trung điểm của BC
b: Xét (O) có
ΔBCD nội tiếp
BD là đường kính
Do đó: ΔBCD vuông tại C
=>CB⊥CD
mà OA⊥BC
nên OA//CD
c: Ta có: \(\hat{FBA}+\hat{OBF}=\hat{OBA}=90^0\)
\(\hat{HBF}+\hat{OFB}=90^0\) (ΔBHF vuông tại H)
mà \(\hat{OBF}=\hat{OFB}\) (ΔOBF cân tại O)
nên \(\hat{FBA}=\hat{HBF}\)
=>BF là phân giác của góc HBA
Xét (O) có
ΔBFE nội tiếp
FE là đường kính
Do đó: ΔBFE vuông tại B
=>BF⊥BE
=>BE là phân giác ngoài tại đỉnh B của ΔHBA
Xét ΔHBA có BF là phân giác của góc HBA
nên \(\frac{FH}{FA}=\frac{BH}{BA}\left(3\right)\)
Xét ΔHBA có BE là phân giác ngoài tại đỉnh B
nên \(\frac{EH}{EA}=\frac{BH}{BA}\left(4\right)\)
Từ (3),(4) suy ra \(\frac{FH}{FA}=\frac{EH}{EA}\)
=>\(FH\cdot EA=FA\cdot EH\)

a: góc OBA+góc OCA=180 độ
=>ABOC nội tiếp
Xét (O) có
AB,AC là tiếp tuyến
=>AB=AC
mà OB=OC
nên OA là trung trực của BC
=>OA vuông góc BC
b: Xét ΔABF và ΔAEB có
góc ABF=góc AEB
góc BAF chung
=>ΔABF đồng dạng với ΔAEB
=>AB/AE=AF/AB
=>AB^2=AE*AF
Ta có: B A C ^ = 60 0 => B A O ^ = 30 0
=> OA = 2OB = 2R
Vì OA = 2OB = 2R
=> B A O ^ = 30 0 => B A C ^ = 60 0