Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
A B D C P S H O Q R
a ) Theo định lí Py - ta - go
\(HA^2+HB^2=AB^2;HC^2+HB^2=BC^2;HC^2+HD^2=CD^2;HA^2+HD^2=AD^2\)
\(\Rightarrowđpcm\)
b ) Tứ giác \(HPBS\)nội tiếp \(\Rightarrow\widehat{HPS}=\widehat{HBS}=\widehat{DBC}\)
Tứ giác HPAQ là hình chữ nhật \(\Rightarrow\widehat{HPQ}=\widehat{HAQ}=\widehat{CAD}=\widehat{CBD}\)
Do đó : \(\widehat{SPQ}=\widehat{HPS}+\widehat{HPQ}=2\widehat{CBC}\)
Tương tư : \(\widehat{SQR}=2\widehat{BDC}\)
Do đó : \(\widehat{DBC}+\widehat{BDC}=180^0\)
\(\Leftrightarrow\widehat{SPQ}+\widehat{SRQ}=180^0\) nên tứ giác PQRS nội tiếp ( đ/lí
đảo)
Chúc bạn học tốt !!!
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\sqrt{2016a+\frac{\left(b-c\right)^2}{2}}=\sqrt{2016a+\frac{b^2-2bc+c^2}{2}}=\sqrt{2016a+\frac{b^2+2bc+c^2-4bc}{2}}\)
\(=\sqrt{2016a+\frac{\left(b+c\right)^2-4bc}{2}}=\sqrt{2016a+\frac{\left(b+c\right)^2}{2}-2bc}\)
\(\le\sqrt{2016a+\frac{\left(b+c\right)^2}{2}}\left(b,c\ge0\right)=\sqrt{2016a+\frac{\left(a+b+c-a\right)^2}{2}}\)
\(=\sqrt{2016a+\frac{\left(1008-a\right)^2}{2}}=\sqrt{\frac{\left(1008+a\right)^2}{2}}=\frac{1008+a}{\sqrt{2}}\left(a\ge0\right)\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{2016b+\frac{\left(c-a\right)^2}{2}}\le\frac{1008+b}{\sqrt{2}};\sqrt{2016c+\frac{\left(a-b\right)^2}{2}}\le\frac{1008+c}{\sqrt{2}}\)
Cộng theo vế 3 BĐT trên ta có:
\(VT\le\frac{3\cdot1008+\left(a+b+c\right)}{\sqrt{2}}=\frac{4\cdot1008}{\sqrt{2}}=2016\sqrt{2}\)
a) Xét tam giác ABH vuông tại H ta có:
\(AH^2=AB^2-BH^2\)
Xét tam giác CHD vuông tại H ta có:
\(CH^2=CD^2-HD^2\)
Xét (O) ta có:
Tam giác ABD nội tiếp (O)
BD là đường kính
=> Tam giác ABD vuông tại D
=> \(AB^2+AD^2=BD^2\)
Ta có:
\(HA^2+HB^2+HC^2+HD^2=AB^2-HB^2+CD^2-HD^2=AB^2+CD^2\)
Mà \(CD=AD\) ( dễ chứng minh )
Nên \(HA^2+HB^2+HC^2+HD^2=AB^2+AD^2\)ư
MÀ \(AB^2+AD^2=BD^2\)
Nên \(HA^2+HB^2+HC^2+HD^2=BD^2\)
Do BD cố định nên \(HA^2+HB^2+HC^2+HD^2=BD^2\) không đổi
câu b thì đây