Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Gọi G là giao điểm của DE và CH. I là giao điểm của DE và OC. F là giao điểm của OC với (O)
Xét tam giác CGI và tam giác COH có:
\(\hept{\begin{cases}\widehat{HCO}chung\\\widehat{CIG}=\widehat{CHO}=90^0\end{cases}\Rightarrow\Delta CGI~\Delta COH\left(g-g\right)}\)
\(\Rightarrow\frac{CG}{CI}=\frac{CO}{CH}\)
\(\Rightarrow CG.CH=CO.CI\)
\(\Rightarrow2.CG.CH=2.CO.CI=CF.CI\)(1)
Áp dụng hệ thức lượng trong tam giác CEF vuông tại E có EI là đường cao ta có:
\(CF.CI=CE^2=CH^2\)(2)
Từ (1) và (2) \(\Rightarrow2.CG.CH=CH^2\)
\(\Rightarrow2CG=CH\)
\(\Rightarrow G\)là trung điểm của CH mà DE cắt CH tại G
\(\Rightarrow DE\)đi qua trung điểm của CH

a: Ta có: ΔOBE cân tại O
mà OD là trung tuyến
nên OD vuông góc với BE và OD là phân giác của góc BOE
b: Xét ΔDEB có
DN vừa là đường cao, vừa là trung tuyến
nên ΔDEB cân tại D
c: Xét ΔDBO và ΔDEO có
DB=DE
BO=EO
DO chung
Do đo: ΔDBO=ΔDEO
=>góc DEO=90 độ
=>DE là tiếp tuyến của (O)
d: Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đo: ΔAEB vuông tại E
Xét ΔAEB có AO/AB=AM/AE
nên OM//EB và OM=EB/2
=>OM//EN và OM=EN
=>EMON là hình bình hành
mà góc MEN=90 độ
nên EMON là hình chữ nhật