Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
đầu tiên viết pt hoành độ giao điểm
thứ hai giải denta của pt hoành độ giao điểm để tìm điều kiện của m
thứ ba giải viet rồi thế x1x2 vào pt mà đề cho
thứ tư vì y1 và y2 đều thuộc (d) nên y1 = 2x1 - m + 1
y2 = 2x2 - m + 1
thứ năm thay y1 và y2 vào pt mà đề cho rồi giải tìm m và m sẽ bằng 7 (thỏa mãn đk của denta)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(y=\left(m-1\right)x+2m-1\)
\(\Leftrightarrow\left(m-1\right)x+2\left(m-1\right)+1-y=0\)
\(\Leftrightarrow\left(m-1\right)\left(x+2\right)+1-y=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\1-y=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-2\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(-2;1\right)\)
b/ d qua A \(\Rightarrow7=3m+1\Rightarrow m=2\)
Phương trình hoành độ giao điểm: \(2x^2-mx-1=0\)
\(\Delta=m^2+8>0\Rightarrow d\) luôn cắt (P) tại 2 điểm pb
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{m}{2}\\x_1x_2=-\frac{1}{2}\end{matrix}\right.\)
\(T=x_1x_2+\left(2x_1\right)^2.\left(2x_2\right)^2=16\left(x_1x_2\right)^2+x_1x_2\)
\(=16\left(-\frac{1}{2}\right)^2-\frac{1}{2}=\frac{7}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có A thuộc (P) <=> \(y_A=x^2_A\Rightarrow y_A=4\)Vậy A(-2;4)
b, Hoành độ giao điểm (P) ; (d) tm pt
\(x^2-2x-m^2+2m=0\)
\(\Delta=1-\left(-m^2+2m\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Để pt có 2 nghiệm pb khi m khác 1
c, Theo Vi et \(\hept{\begin{cases}x_1+x_2=2\\x_1x_2=-m^2+2m\end{cases}}\)
Vì x1 là nghiệm pt trên nên \(x_1^2=2x_1+m^2-2m\)
Thay vào ta được \(2x_1+m^2+2x_2=5m\)
\(\Leftrightarrow2\left(x_1+x_2\right)+m^2-5m=0\)
\(\Rightarrow m^2-5m+4=0\Leftrightarrow m=1\left(ktm\right);m=4\left(tm\right)\)
b) x2-2x-m2+2m=0
Δ'= (-1)2+m2-2m= (m-1)2>0 thì m≠1
KL:....
c) với m≠1 thì PT có 2 nghiệm PB
C1. \(x_1=1-\sqrt{\left(m-1\right)^2}=1-\left|m-1\right|\)
tt. tính x2
C2.
Theo Viets: \(S=x_1+x_2=2;P=x_1x_2=-m^2+2m\)
Ta có: \(x_1^2+2x_2=3m\Rightarrow x_1^2=3m-2x_2\)
Từ \(S=x_1+x_2=2\Rightarrow x_2=2-x_1\)Thay vào P ta có:
\(P=x_1\left(2-x_1\right)=-m^2+2m\)
⇔2x1-x12=-m2+2m
⇔2x1- (3m-2x2)=-m2+2m (Thay x12=3m-2x2)
⇔2x1-3m+2x2=-m2+2m⇔2(x1+x2)=-m2+5m ⇔2.2=-m2+5m ⇔m=4 (TM) và m=1(KTM)
Vậy với m=4 thì .....
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Bạn tự giải
b/ Phương trình hoành độ giao điểm:
\(x^2-2mx-m^2-2=0\)
\(ac=1.\left(-m^2-2\right)< 0\) nên pt luôn có 2 nghiệm với mọi m
Do \(x_1\) là nghiệm của pt
\(\Rightarrow x_1^2-2mx_1-m^2-2=0\Rightarrow2x_1^2=4mx_1+2m^2+4\)
Thay vào bài toán:
\(4m\left(x_1+x_2\right)-4m^2-1< 0\)
\(\Leftrightarrow8m^2-4m^2-1< 0\)
\(\Leftrightarrow4m^2< 1\Rightarrow m^2< \frac{1}{4}\Rightarrow-\frac{1}{2}< m< \frac{1}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
câu a bạn thay x=-1 ,y= 3 vào (d) nha
câu b)
Xét pt hoành độ giao điểm :
\(2x-a+1=\frac{1}{2}x^2\Rightarrow x^2-4x+2a-2=0\)
Bạn tự xét delta để tìm điều kiện nha
Theo hệ thức Vi ét ,ta có:
\(\hept{\begin{cases}x_1+x_2=4\\x_1\cdot x_2=2a-2\end{cases}}\)
\(x_1x_2\left(y_1+y_2\right)+48=0\Rightarrow\frac{1}{2}x_1x_2\left(x_1^2+x_2^2\right)+48=0\)
\(\Rightarrow\frac{1}{2}x_1x_2\left(x_1+x_2\right)^2-2\cdot\frac{1}{2}x_1^2x_2^2+48=0\)
\(\Rightarrow\frac{1}{2}\left(2a-2\right)\cdot4^2-\left(2a-2\right)^2+48=0\)
\(\Rightarrow-4a^2+24a+28=0\)
\(\Rightarrow\orbr{\begin{cases}a=7\\a=-1\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cắt trục hoành thì cái điểm đó tung độ sẽ bằng 0 chứ sao có thể là -2
Em sửa lại đề:
Hoặc là d2 cắt trục tung
Hoặc là hoành độ là -2