K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2020

tự kẻ hình nha

a) vì AB=AC=> tam giác ABC cân A=> ABC=ACB=180-90/2=45 độ

xét tam giác ABM và tam giác ACM có

AB=AC(gt)

ABC=ACB(cmt)

BM=CM(gt)

=> tam giác ABM= tam giác ACM(cgc)

b) phải là AM//CK nha

từ tam giác ABM= tam giác ACM=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ (kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC, CK vuông góc với BC

=> AM//CK

c) vì tam giác BCK vuông tại C=> CBK+BKC=90 độ=> BKC=90-45=45 độ

Câu a: Chứng minh tam giác ABH = tam giác ACH

Ta có tam giác ABC cân tại A, tức là ( AB = AC ).
Điểm ( H ) là trung điểm của đoạn ( BC ), nên ( BH = HC ).
Xét hai tam giác ( ABH ) và ( ACH ):

  • ( AB = AC ) (giả thiết tam giác ABC cân tại A).
  • ( BH = HC ) (do ( H ) là trung điểm của ( BC )).
  • ( \angle ABH = \angle ACH ) (đối đỉnh).
    Vậy theo cạnh - góc - cạnh (c.g.c), ta có:
    [ \triangle ABH = \triangle ACH ]

Câu b: Chứng minh ( \angle ABM = \angle ACM ) và tam giác MBC cân

  • Vì ( M ) nằm trên tia phân giác của góc ( ABC ), ta có: [ \angle ABM = \angle CBM ]
  • Mặt khác, do tam giác ( ABH ) và ( ACH ) bằng nhau (chứng minh ở câu a), nên: [ \angle CBM = \angle ACM ] Suy ra:
    [ \angle ABM = \angle ACM ]
  • Xét tam giác ( MBC ):
  • ( \angle CBM = \angle BCM ) (do ( M ) nằm trên tia phân giác của ( \angle ABC )).
  • ( MB = MC ) (cạnh đối diện hai góc bằng nhau).
    Vậy tam giác ( MBC ) cân tại ( M ).

Câu c: Chứng minh ( AB = AN )

  • Do đường thẳng đi qua ( A ) song song với ( BC ) cắt tia ( BM ) tại ( N ), ta có:
    [ AN \parallel BC ]
  • Xét tam giác ( ABN ), có ( AN \parallel BC ) nên theo định lý đường trung bình của tam giác, ta có:
    [ AB = AN ]

Câu d: Chứng minh ( MC \perp CN )

  • Từ câu b, tam giác ( MBC ) cân tại ( M ) nên ( MC = MB ).
  • Do ( AN \parallel BC ), nên góc ( MCN ) bằng góc ( NBC ).
  • Mà ( \angle NBC = 90^\circ ) (do đường thẳng ( AN ) song song với ( BC )).
  • Vậy suy ra ( MC \perp CN ).
18 tháng 2 2020

Bài 5:

Tgiac ABC vuông cân tại A => góc CBA = 45 độ

Xét góc CBA là góc ngoài tgiac DBC => góc CBA = góc D + DCB

Xét tgiac DBC có DB = BC => tgiac DBC cân tại B => góc D = góc DBC

=> góc D = 45/2 = 22,5 độ

và góc ACD = 22,5 + 45 = 67,5 độ

Vậy số đo các góc của tgiac ACD là ...

Bài 6: 

Tgiac ABC cân tại B, góc B = 100 độ => góc A = góc C = 40 độ

Xét tgiac ABD có AB = AD => tgiac ABD cân tại A => góc EDB (ADB) = (180-40)/2 =70 độ

cmtt với tgiac CBE => góc DEB = 70 độ

=> góc DBE = 180-70-70 = 40 độ

Bài 7: 

Xét tgiac ABC cân tại A => góc BAC = 180 - 2.góc C => 2.(90 - góc C)

Xét tgiac BHC vuông tại H => góc CBH = 90 - góc C

=> đpcm

Bài 8: mai làm hihi

18 tháng 2 2020

bài này dễ sao không biết

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = ODa) Chứng minh tam giác OAD = tam giác OCBb) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMBc) Chứng minh rằng OM là tia phân giác của góc xOy2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BCa) Chứng minh tam giác ABM = tam giác...
Đọc tiếp

1. Cho góc xOy nhọn. Trên tia Ox lấy hai điểm A, B (điểm B nằm giữa hai điểm O Và A). Trên tia Oy lấy hai điểm C, D (điểm D nằm giữa hai điểm O và C) sao cho OA = OC và OB = OD

a) Chứng minh tam giác OAD = tam giác OCB

b) AD cắt BC tại M. Chứng minh tam giác CMB = tam giác AMB

c) Chứng minh rằng OM là tia phân giác của góc xOy

2. Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC

a) Chứng minh tam giác ABM = tam giác ACM

b) Chứng minh AM vuông góc với BC.

c) Trên cạnh BA lấy điểm E, trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh tam giác EBC = tam giác ECB

d) Chứng minh EF = BC

3. Cho đường thẳng a. Trên cùng một nửa mặt phẳng có bờ là dường thẳng a lấy hai điểm A và B. Từ A vẽ AH vuông góc với đường thẳng a (H thuộc a). Trên tia đối của tia HA lấy điểm C sao cho HC = HA. Từ B vẽ BK vuông góc với đường thẳng a (K thuộc a). Trên tia đối của tia KB lấy điểm D sao cho KB = KD. Đoạn thẳng AD cắt đường thẳng a tại E. Nối E với C và E với B

a) Chứng minh rằng: EA = EC và EB = ED

b) Chứng minh rằng: C, E, B thẳng hàng

c) Gọi M là trung điểm của đoạn thẳng AB, N là trung điểm của đoạn thẳng CD. Chứng minh rằng EM = EN

4. Cho tam giác ABC. D, E lần lượt là trung điểm của đoạn thẳng AB, AC. Trên tia đối của tia DC lấy điểm M sao cho DM = DC. Trên tia đối cuả tia EB lấy điểm N sao cho EN = EB. Chứng minh rằng

a) Tam giác DBC = tam giác DAM

b) AM//BC

c) M, A, N thẳng hàng

0