Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b/ Xét tứ giác MPND có:
góc NMP =90 độ (do tam giác MNP vuông tại M)(1)
Tam giác NDQ nội tiếp đường tròn đường kính NQ có cạnh NQ là đường kính
=> tam giác NDQ vuông tại D
=> góc QDN =90 độ(2)
Từ (1) và (2)=> góc QDN = gócNMP
=> tứ giác MPND nội tiếp (đpcm)
c/Từ giác MPND nội tiếp (c/m câu b)
=> góc DMN=góc DPN (cùng chắn cungDN) (đpcm)
d/Xét tứ giác MQEP có:
góc QMP=90 độ (do tam giác MNP vuông tại M và M, Q,N thẳng hàng) (3)
Tam giác NQE nội tiếp đường tròn đường kính NQ có cạnh NQ là đường kính
=> tam giác NQE vuông tại E
=> góc NEQ=90 độ
=> góc QEP=90 độ (góc NEQ+góc QEP=90 độ do kề bù) (4)
Từ (3) và (4)=> tứ giác MQEP nội tiếp
=> góc QME=gócQPE
hay góc NME=góc DPN (do D,Q,P thẳng hàng và N,Q,M thẳng hàng) (5)
Mà góc DPN=góc DMN (c/m câu c) (6)
từ (5) và (6)=> góc DMN=góc NME (7)
Mặt khác: tia MN nằm giữa 2 tia MD và ME (8)
Từ (7) và (8)=> MN là đường phân giác của góc DME (đpcm)

a) Xét (O) có
ΔNDP nội tiếp đường tròn(N,D,P∈(O))
NP là đường kính của (O)(gt)
Do đó: ΔNDP vuông tại D(Định lí)
⇒ND⊥DP tại D
hay ND⊥MP(đpcm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔNMP vuông tại N có ND là đường cao ứng với cạnh huyền MP, ta được:
MN2=MD⋅MPMN2=MD⋅MP(đpcm)
b) Vì N,E∈(O) và N,O,E không thẳng hàng
nên NE là dây của (O)
Xét (O) có
OM là một phần đường kính
NE là dây(cmt)
OM⊥NE tại H(gt)
Do đó: H là trung điểm của NE(Định lí đường kính vuông góc với dây)(đpcm)

a: góc NAP=góc NBP=90 độ
=>PA vuông góc MN và NB vuông góc MB
Xét ΔMNP có
NB,PA là đường cao
NB cắt PA tại H
=>H là trực tâm
=>MH vuông góc NP tại I
Xét ΔHAN vuông tại A và ΔHBP vuông tại B có
góc AHN=góc BHP
=>ΔHAN đồng dạng với ΔHBP
b: góc HIP+góc HBP=180 độ
=>HIPB nội tiếp
c: góc BAH=góc IMP
góc IAH=góc BNP
mà góc IMP=góc BNP
nên góc BAH=góc IAH
=>AH là phân giác của góc BAI
góc ABH=góc NMI
góc IBH=góc APN
mà góc NMI=góc APN
nên góc ABH=góc IBH
=>BH là phân giác của góc ABI

O M N P Q I J H G K
a) Ta thấy đường trong (O) có dây cung PQ vuông góc với đường kính MN
=> M là điểm chính giữa của cung PQ => MP=MQ => \(\Delta\)PMQ cân tại M => ^MPQ=^MQP.
Tứ giác PMQJ nội tiếp (O) => ^MJQ=^MPQ; ^MJP=^MQP. Mà ^MPQ=^MQP (cmt)
=> ^MJQ=^MJP => MJ là phân giác ^PJQ (đpcm).
b) Đường tròn (O) có MN là đường kính: J thuộc cung MN => ^MJN=900 hay ^HJN=900
Xét tứ giác HINJ: ^HJN=^HIN=900 => Tứ giác HINJ nội tiếp đường tròn (đpcm).
c) Tứ giác MJNQ nội tiếp đường tròn (O) => ^MJQ=^MNQ.
Dễ thấy ^MNQ=^MNP => ^MJQ=^MNP hay ^GJK=^KNG.
Xét tứ giác GKNJ: ^GJK=^KNG (cmt) => Tứ giác GKNJ nội tiếp đường tròn.
=> ^GKJ=^GNJ hay ^GKJ=^PNJ.
Mà tứ giác PJNQ nội tiếp (O) => ^PNJ=^PQJ nên ^GKJ=^PQJ.
Lại thấy: 2 góc ^GKJ nà ^PQJ nằm ở vị trí đồng vị => GK//PQ (đpcm).
Xét (O) có
ΔQKP nội tiếp
QP là đường kính
DO đó: ΔQKP vuông tại K
Xét tứ giác MNPK có \(\widehat{PKN}=\widehat{PMN}=90^0\)
hay MNPK là tứ giác nội tiếp
Xét (O) có
ΔPHQ nội tiếp
PQ là đường kính
Do đó: ΔPHQ vuông tại H
Xét tứ giác MQHN có \(\widehat{QMN}+\widehat{QHN}=180^0\)
nên MQHN là tứ giác nội tiếp