\(\Delta\)ABC : AB : x-2y+7=0

và 2 đường trung tuyến BM : x+y-5=0

...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

Từ gt=>B(1;4) và N(3;5)(CN cắt AB)=>A(5;6)

G là trọng tâm tam giác->G(6;-1)

=>NG=\(3\sqrt{5}\)

Vì C thuộc CN=> C(c;11-2c)

Vì CG=2GN=>\(CG=6\sqrt{5}\Rightarrow CG^2=180\Rightarrow\left(6-c\right)^2+\left(-1-\left(11-2c\right)\right)^2=180\)

\(\Leftrightarrow\left[{}\begin{matrix}c=0\\c=12\end{matrix}\right.\)

Xét C(0;11)

Xét tích(0-2.11+7)(6-2.(-1)+7)=-225<0=>C,G khác phía so với AB(Loại)

=>C(12;-13)

Khi đó ta sẽ tìm được phương trình hai cạnh còn lại

16 tháng 2 2021

song ngư đẹp trai

16 tháng 2 2021

hiện nay mẹ hơn con 24 tuổi và tuổi con bằng 1 /3 tuổi mẹ cách đây 3 năm tuổi con là bao nhiêu

26 tháng 2 2020

TH1: \(B\in d_1,C\in d_2\)

gt=>\(\overrightarrow{n_{d_1}}\left(3;1\right)\Rightarrow\overrightarrow{u_{d_1}}\left(-1;3\right)\)

Mà A(2;-7)-> Phương trình đường thẳng AC là:

-1(x-2)+3(y+7)=0<=>-x+3y+23=0<=>x-3y-23=0

=> C(5;-6)

Giả sử B(b;-11-3b)

Vì trung điểm đoạn AB thuộc d2

\(\Rightarrow\left(\frac{b+2}{2};\frac{-11-3b-7}{2}\right)\in x+2y+7=0\)

\(\Leftrightarrow\frac{b+2}{2}+2.\left(\frac{-18-3b}{2}\right)+7=0\Leftrightarrow b=4\)

=>B(4;-23)

Khi đó ta sẽ tìm được pt đường thẳng BC

TH2 làm tương tự như trên

27 tháng 2 2020

\(b=-4\) nha bạn

NV
22 tháng 3 2019

Gọi M là trung điểm AB, do \(M\in d_2\Rightarrow M\left(1;a\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_B=2x_M-x_A=-1\\y_B=2y_M-y_A=2a-1\end{matrix}\right.\)

Do \(B\in d_1\Rightarrow2\left(-1\right)-\left(2a-1\right)-1=0\Rightarrow a=-1\) \(\Rightarrow B\left(-1;-3\right)\)

Gọi N là trung điểm AC, do \(N\in d_1\Rightarrow N\left(b;2b-1\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_N-x_A=2b-3\\y_C=2y_N-y_A=4b-3\end{matrix}\right.\)

Do \(C\in d_2\Rightarrow2b-3-1=0\Rightarrow b=2\Rightarrow C\left(1;5\right)\)

\(\overrightarrow{BA}=\left(4;4\right)\Rightarrow\) đường thẳng AB có 1 vtpt là \(\overrightarrow{n_{AB}}=\left(1;-1\right)\)

\(\Rightarrow\) pt AB: \(1\left(x-3\right)-1\left(y-1\right)=0\Leftrightarrow x-y-2=0\)

\(\overrightarrow{AC}=\left(-2;4\right)\Rightarrow\) đường thẳng AC có 1 vtpt \(\overrightarrow{n_{AC}}=\left(2;1\right)\)

\(\Rightarrow\) pt AC: \(2\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow2x+y-6=0\)

\(\overrightarrow{BC}=\left(2;8\right)\Rightarrow\overrightarrow{n_{BC}}=\left(4;-1\right)\)

\(\Rightarrow\) pt BC: \(4\left(x+1\right)-1\left(y+3\right)=0\Leftrightarrow4x-y+1=0\)

NV
18 tháng 6 2020

Đường tròn tâm \(I\left(3;-1\right)\) bán kính \(R=\sqrt{3^2+\left(-1\right)^2-6}=2\)

Các đường thẳng gọi hết là d cho dễ kí hiệu

b/ \(\overrightarrow{MI}=\left(2;-4\right)=2\left(1;-2\right)\)

d đi qua M và vuông góc IM nên nhận (1;-2) là 1 vtpt

Pt d: \(1\left(x-1\right)-2\left(y-3\right)=0\Leftrightarrow x-2y+5=0\)

c/ Thay tọa độ N vào đường tròn thỏa mãn \(\Rightarrow N\in\left(C\right)\) \(\Rightarrow IN\perp d\)

\(\overrightarrow{IN}=\left(0;2\right)=2\left(0;1\right)\Rightarrow\) d nhận (0;1) là 1 vtpt và qua N

Pt d: \(0\left(x-3\right)+1\left(y-1\right)=0\Leftrightarrow y-1=0\)

d/ d song song d1 nên pt có dạng: \(5x+12y+c=0\) (với \(c\ne-2019\))

d tiếp xúc (C) nên \(d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|5.3-12.1+c\right|}{\sqrt{5^2+12^2}}=2\Leftrightarrow\left|c+3\right|=26\Rightarrow\left[{}\begin{matrix}c=23\\c=-29\end{matrix}\right.\)

Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}5x+12y+23=0\\5x+12y-26=0\end{matrix}\right.\)

e/ Tiếp tuyến vuông góc d2 nên nhận \(\left(2;-1\right)\) là 1 vtpt

Phương trình d có dạng: \(2x-y+c=0\)

d tiếp xúc (C) \(\Rightarrow d\left(I;d\right)=R\)

\(\Leftrightarrow\frac{\left|2.3-1.\left(-1\right)+c\right|}{\sqrt{2^2+1^2}}=2\Leftrightarrow\left|c+7\right|=2\sqrt{5}\Rightarrow\left[{}\begin{matrix}c=-7+2\sqrt{5}\\c=-7-2\sqrt{5}\end{matrix}\right.\)

Có 2 tt thỏa mãn: \(\left[{}\begin{matrix}2x-y-7+2\sqrt{5}=0\\2x-y-7-2\sqrt{5}=0\end{matrix}\right.\)

NV
14 tháng 3 2019

Gọi D là trung điểm BC \(\Rightarrow\) MD là đường trung bình tam giác ABC \(\Rightarrow MD//AC\Rightarrow MD\perp d\Rightarrow\) đường thẳng \(MD\) nhận \(\overrightarrow{n_{MD}}=\left(2;-1\right)\) là một vtpt

\(\Rightarrow\) phương trình MD: \(2\left(x-1\right)-1\left(y-1\right)=0\Leftrightarrow2x-y-1=0\)

\(\Rightarrow\) tọa độ D là nghiệm \(\left\{{}\begin{matrix}2x-y-1=0\\x-y+1=0\end{matrix}\right.\) \(\Rightarrow D\left(2;3\right)\)

Do \(B\in d'\Rightarrow B\left(1-2a;a\right)\)

M là trung điểm AB \(\Rightarrow\left\{{}\begin{matrix}x_A=2x_M-x_B=2a+1\\y_A=2y_M-y_B=2-a\end{matrix}\right.\)

\(A\in d\Rightarrow2a+1-\left(2-a\right)+1=0\Leftrightarrow a=0\Rightarrow\left\{{}\begin{matrix}A\left(1;2\right)\\B\left(1;0\right)\end{matrix}\right.\)

\(D\) là trung điểm BC \(\Rightarrow\left\{{}\begin{matrix}x_C=2x_D-x_B=3\\y_C=2y_D-y_B=6\end{matrix}\right.\) \(\Rightarrow C\left(3;6\right)\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

21 tháng 7 2017

hai đường trung tuyến đã cho đều không phải là đường trung tuyến xuất phát từ A vì tọa độ của A không thỏa mãn các phương trình của chúng .

đặc BM : \(2x-y+1=0\) và CN : \(x+y-4=0\) là 2 trung tuyến của tam giác ABC

đặc B\(\left(x;y\right)\) , ta có N \(\left(\dfrac{x-2}{2};\dfrac{y+3}{2}\right)\)\(\left\{{}\begin{matrix}B\in BM\\N\in CN\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\\dfrac{x-2}{2}+\dfrac{y+3}{2}-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=-1\\x+y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

vậy phương trình đường thẳng chứa cạnh AB là : \(2x-4y+16=0\) \(\Leftrightarrow x-2y+8=0\)

tương tự ta có phương trình đường thẳng chứa cạnh AC là : \(2x+5y-11=0\) phương trình đường thẳng chứa cạnh BC là : \(4x+y-13=0\)

31 tháng 5 2017

a) Đường tròn (T) có tâm là điểm (2 ; 1) và có bán kính bằng \(\sqrt 2\)

b) \(-3\le m\le1\)

c) Có hai tiếp tuyến với (T) thỏa mãn đề bài là :

\({\Delta _1}:x + y - 1 = 0\)

\({\Delta _2}:x + y - 5 = 0\)