\(\Delta ABC\) thỏa mãn \(h_a=\sqrt{p\left(p-a\right)}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
26 tháng 2 2021

\(S=\dfrac{1}{2}ah_a=\dfrac{1}{2}a\sqrt{p\left(b-a\right)}\) ; \(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\)

\(\Rightarrow\dfrac{1}{2}a=\sqrt{\left(p-b\right)\left(p-c\right)}\)

\(\Leftrightarrow\dfrac{1}{2}a=\sqrt{\dfrac{\left(a+c-b\right)\left(a+b-c\right)}{4}}\Leftrightarrow a^2=\left(a+c-b\right)\left(a+b-c\right)\)

\(\Leftrightarrow b^2-2bc+c^2=0\Leftrightarrow\left(b-c\right)^2=0\)

\(\Leftrightarrow b=c\)

22 tháng 12 2019

\(\overrightarrow{AB}\left(1;-3\right),\overrightarrow{AC}\left(6;2\right),\overrightarrow{BC}\left(5;5\right)\)

\(\left|\overrightarrow{AB}\right|=\sqrt{1^2+\left(-3\right)^2}=\sqrt{10}\)

tương tự \(\left|\overrightarrow{AC}\right|=2\sqrt{10},\left|\overrightarrow{BC}\right|=5\sqrt{2}\)

\(AB^2+AC^2=\left(\sqrt{10}\right)^2+\left(2\sqrt{10}\right)^2=50=BC^2\)

\(\Rightarrow\Delta ABC\) là tam giác vuông

\(P_{\Delta ABC}=2\sqrt{10}+\sqrt{10}+5\sqrt{2}=3\sqrt{10}+5\sqrt{2}\)

\(S_{\Delta ABC}=\frac{1}{2}.2\sqrt{10}.\sqrt{10}=10\)

20 tháng 5 2017

a) Gọi H là hình chiếu của A trên tam giác, suy ra H là trung điểm BC.

\(AH=d\left(A,BC\right)=\dfrac{9}{\sqrt{2}}\)

Phương pháp tọa độ trong mặt phẳng