Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
tự vẽ hình
a) Xét tam giác ABE và tam giác ACD, ta có:
Góc BAE= góc DAC(hay góc A là góc chung)
AD=AC(gt)
AD=AE(gt)
Vậy tam giác ABE = tam giác ACD (c-g-c)
=> BE=CD ( cặp cạnh t/ứng)
=> góc ABE=góc ACD (cặp góc t/ứng) hay góc ABK=góc ACK
b) Vì AB=AC, AD=AE => BD=CE( vì AD+BD=AB;AE+EC=AC)
tam giác DBK có: góc D+góc B+góc K=180 độ
tam giác KCE có: góc K+góc C+góc E=180 độ
mà Góc B= góc C(cmt) và Góc K1=Góc K1(đối đỉnh)---bạn tự kí hiệu nha :")
=> góc D=góc E
Xét tam giác BKD và tam giác KCE, ta có:
Góc BDK=góc KEC(cmt)
Góc DBK=góc ECK(cmt)
DB=CE(cmt)
Vậy tam giác BKD = tam giác KCE(g-c-g)
=> DK=EK(cặp cạnh tướng ứng)
c) Xét tam giác ADK và tam giác AEK, ta có:
AD=AE(gt)
DK=KE(cmt)
AK là cạnh chung
Vậy tam giác ADK= tam giác AEK(c-c-c)
=> góc DAK=góc EAK(cặp góc t/ứng) hay góc BAK=góc CAK
=> AK là p/g của góc BAC
d) Góc BAK=góc CAK hay góc BAI=góc CAI
Xét tam giác BAI và tam giác CAI, ta có:
AB=AC(gt)
AI là cạnh chung
Góc BAI=góc CAI (cmt)
Vậy tam giác BAI = tam giác CAI(c-g-c)
=>Góc AIB=góc AIC(cặp góc t/ứng)
mà góc AIB+góc AIC=180 độ => AIB=AIC=90 độ
=> AI vuông góc với BC
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E F
GT | △ABC: AB < AC. BAD = DAC = BAC/2 (D E F |
KL | a, △ABD = △AED b, AD ⊥ FC c, △BDF = △EDC ; BF = EC d, F, D, E thẳng hàng |
Bài làm:
a, Xét △ABD và △AED
Có: AB = AE (gt)
BAD = DAE (gt)
AD là cạnh chung
=> △ABD = △AED (c.g.c)
b, Vì △ABD = △AED (cmt)
=> BD = ED (2 cạnh tương ứng)
=> D thuộc đường trung trực của BE (1)
Vì AB = AE (gt) => A thuộc đường trung trực của BE (2)
Từ (1) và (2) => AD là đường trung trực của BE
=> AD ⊥ FC
c, Vì △ABD = △AED (cmt)
=> ABD = AED (2 góc tương ứng)
Ta có: ABD + DBF = 180o (2 góc kề bù)
AED + DEC = 180o (2 góc kề bù)
Mà ABD = AED (cmt)
=> DBF = DEC
Lại có: AB + BF = AF
AE + EC = AC
Mà AB = AE (gt) ; AF = AC (gt)
=> BF = EC
Xét △BDF và △EDC
Có: BD = ED (cmt)
DBF = DEC (cmt)
BF = EC (cmt)
=> △BDF = △EDC (c.g.c)
d, Vì △BDF = △EDC (cmt)
=> BDF = EDC (2 góc tương ứng)
Ta có: BDE + EDC = 180o (2 góc kề bù)
=> BDE + BDF = 180o
=> FDE = 180o
=> 3 điểm F, D, E thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a) ta có tam giác abc là tam giác cân
=> AD=AC
MÀ BD=CE (1)
=>AD=AE(2)
Từ 1 và 2 suy ra DE là đường TB
=> DE=1/2BC
=> DE//BC (đccm)
![](https://rs.olm.vn/images/avt/0.png?1311)
A C B E D Xét tam giác vuông ABC và tam giác vuông ADE có :
AB=AD
AC=AE
=> tam giác ABC= tam giác ADE ( 2 cạnh góc vuông )
![](https://rs.olm.vn/images/avt/0.png?1311)
tu ve hinh :
xet tamgiac BAM va tamgiac DAM co : AM chung
goc BAM = goc MAD do AM la phan giac cua goc BAC (gt)
AB = AD (gt)
=> tamgiac BAM = tamgiac DAM (c - g - c)
=> BM = MD (dn) (1)
b, xet tamgiac DAK va tamgiac BAC co ; goc A chung
AB = AD (gt)
(1) => goc ABC = goc ADK (dn)
=> tamgiac DAK = tamgiac BAC (g - c - g)
a: Xét ΔADC và ΔAEB có
AD=AE
góc DAC chung
AC=AB
Do đó: ΔADC=ΔAEB
b: Xét ΔDBC và ΔECB có
DB=EC
BC chung
DC=EB
DO đo: ΔDBC=ΔECB
c: Xét ΔIBC có \(\widehat{IBC}=\widehat{ICB}\)
nên ΔIBC cân tại I
=>IB=IC
mà AB=AC
nên AI là đường trung trực của BC
hay AI\(\perp\)BC
d: Ta có: ΔABC cân tại A
mà AI là đườg cao
nên AI là phân giác của góc BAC