Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất đường phân giác trong tam giác ta có :\(\frac{IA}{ID}=\frac{AC}{CD}\)
Mà \(\frac{AC}{CD}=\frac{AB}{BD}\) \(\frac{\Rightarrow IA}{ID}=\frac{AC}{CD}=\frac{AB}{BD}=\frac{AC+AB}{CD+BD}=\frac{AC+AB}{BC}\)

bài 1
\(K=x^2+x+1=x^2+2\cdot\frac{1}{2}x+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>=\frac{3}{4}\)
dấu = xảy ra khi \(\left(x+\frac{1}{2}\right)^2=0\Rightarrow x+\frac{1}{2}=0\Rightarrow x=-\frac{1}{2}\)
vậy min của K là 3/4 tại x=-1/2
bài 2
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=0^2=0\)
\(\Rightarrow2+2ab+2ac+2bc=0\Rightarrow2ab+2ac+2bc=-2\Rightarrow ab+ac+bc=-1\)
\(\left(ab+ac+bc\right)^2=a^2b^2+a^2c^2+b^2c^2+2a^2bc+2ab^2c+2abc^2\)
\(=a^2b^2+a^2c^2+b^2c^2+2abc\left(a+b+c\right)=a^2b^2+a^2c^2+b^2c^2=\left(-1\right)^2=1\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2=a^4+b^4+c^4+2=2^2=4\)
\(\Rightarrow a^4+b^4+c^4=2\)
A C B M N I
Qua I vẽ đường thẳng vuông góc với CI cắt AC. BC lần lượt tại M, N. Khi đó CM=CN, IM=IN.
Ta chứng minh được \(\widehat{AIB}=180-\widehat{BAI}-\widehat{ABI}=180-\frac{BAC}{2}-\frac{ABC}{2}=\frac{360-\left(ABC+BÃC\right)}{2}\)
\(=\frac{360-180+ACB}{2}=90+\frac{ACB}{2}\)
\(AMI=180-CMN=180-\frac{180-ACB}{2}=\frac{360-180+ACB}{2}=90+\frac{ACB}{2}\)
Chứng minh tương tự ta cũng có: \(BNI=90+\frac{ACB}{2}\)
Từ đó suy ra: \(\Delta AIB\infty\Delta AMI\left(g.g\right)\Rightarrow\frac{AI}{AM}=\frac{AB}{AI}\Rightarrow AI^2=AB.AM\Rightarrow\frac{AI^2}{AB.AC}=\frac{AM}{AC}\)
\(\Delta AIB\infty\Delta INB\left(g.g\right)\Rightarrow\frac{BI}{IN}=\frac{AB}{BN}\Rightarrow BI^2=AB.BN\Rightarrow\frac{BI^2}{AB.BC}=\frac{BN}{BC}\)
\(\Delta AMI\infty\Delta INB\Rightarrow\frac{AM}{IN}=\frac{IM}{BN}\Rightarrow AM.BN=IM.IN=IM^2\)
Áp dụng định lí Py- ta-go vào tam gác ICM ta có:
\(IM^2+CI^2=CM^2\Rightarrow BN.AM+CI^2=CM.CN\Rightarrow BN.AM+CN.AM+CI^2=CM.CN+CN.AM\)
\(\Rightarrow BC.AM+CI^2=CN.AC\Rightarrow BC.AM+CI^2+AC.BN=CN.AC+AC.BN\)
\(\Rightarrow BC.AM+BN.AC+CI^2=AC.BC\Rightarrow\frac{AM}{AC}+\frac{BN}{BC}+\frac{CI^2}{AC.BC}=1\)
\(\Rightarrow\frac{AI^2}{AB.AC}+\frac{BI^2}{BA.BC}+\frac{CI^2}{CA.CB}=1\)