Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Năm số hạng đầu là
b) Lập tỉ số
Theo công thứcđịnh nghĩa ta có
Từ (1) và (2) suy ra
Vậy, dãy số ( v n ) là cấp số nhân, có v 1 = 1 / 3 , q = 1 / 3
c) Để tính ( u n ) , ta viết tích của n - 1 tỉ số bằng 1/3

a)u(n+1) = 1 + 1/(n+1); v(n+1) = 5(n + 1) - 1 = 5n + 4
b) Ta có:
⇒ u(n+1) < un, ∀n ∈ N*
v(n+1) - vn = (5n + 4) - (5n - 1) = 5 > 0
⇒ v(n+1) > vn ,∀n ∈ N*

a. u1 = - 1, un + 1 = un + 3 với n > 1
u1 = - 1;
u2 = u1 + 3 = -1 + 3 = 2
u3 = u2 + 3 = 2 + 3 = 5
u4 = u3 + 3 = 5 + 3 = 8
u5 = u4 + 3 = 8 + 3 = 11
b. Chứng minh phương pháp quy nạp: un = 3n – 4 (1)
+ Khi n = 1 thì u1 = 3.1 - 4 = -1, vậy (1) đúng với n = 1.
+ Giả sử công thức (1) đúng với n = k > 1 tức là uk = 3k – 4.
+ Ta chứng minh (1) đúng với n= k+ 1 tức là chứng minh: uk+1 = 3(k+1) - 4
Thật vậy,ta có : uk + 1 = uk + 3 = 3k – 4 + 3 = 3(k + 1) – 4.
⇒ (1) đúng với n = k + 1
Vậy (1) đúng với ∀ n ∈ N*.

l i m v n = 0 ⇒ | v n | có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi (1)
Vì | u n | ≤ v n v à v n ≤ | v n | với mọi n, nên | u n | ≤ | v n | với mọi n. (2)
Từ (1) và (2) suy ra | u n | cũng có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, nghĩa là l i m u n = 0
\(u_n-18=5u_{n-1}-21=5\left(u_{n-1}-18\right)+69\)
Đặt \(v_n=u_n-18\Rightarrow\left\{{}\begin{matrix}v_1=-17\\v_n=5v_{n-1}+69\end{matrix}\right.\)
\(\Rightarrow v_n+\frac{69}{4}=5\left(v_{n-1}+\frac{69}{4}\right)\)
Đặt \(v_n+\frac{69}{4}=x_n\Rightarrow\left\{{}\begin{matrix}x_1=\frac{1}{4}\\x_n=5x_{n-1}\end{matrix}\right.\)
\(\Rightarrow x_n\) là CSN với công bội \(q=5\Rightarrow x_n=x_1.q^{n-1}=\frac{1}{4}5^{n-1}\)
\(\Rightarrow v_n=x_n-\frac{69}{4}=\frac{1}{4}5^{n-1}-\frac{69}{4}\)
Bạn coi lại đề bài, rõ ràng đây ko phải là 1 cấp số nhân