Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng hệ thức liên quan tới đường cao vào \(\Delta ABC\), ta có:
\(AH^2=BH.HC\Rightarrow HC=\dfrac{AH^2}{BH}=\dfrac{2^2}{1}=4\left(cm\right)\)
Mặt khác, áp dụng định lý Pytago vào \(\Delta BHA\), ta có:
\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{2^2+1}=\sqrt{5}\left(cm\right)\)
Áp dụng hệ thức giữa đường cao và các cạnh vào \(\Delta ABC\), ta có:
\(AB.AC=AH.BC\Rightarrow AC=\dfrac{AH.BC}{AB}=\dfrac{2.\left(1+4\right)}{\sqrt{5}}=2\sqrt{5}\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
nên \(HC=\dfrac{2^2}{1}=4\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AC^2=HC\cdot BC\)
nên \(AC^2=20\)
hay \(AC=2\sqrt{5}\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng định lí Pytago cho tam giác ABC vuông tại A
\(BC^2=AB^2+AC^2=4+25=29\Rightarrow BC=\sqrt{29}\)cm
* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{10}{\sqrt{29}}=\frac{10\sqrt{29}}{29}\)cm
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{4}{\sqrt{29}}=\frac{4\sqrt{29}}{29}\)cm
* Áp dụng hệ thức : \(AC^2=CH.BC\Rightarrow CH=\frac{AC^2}{BC}=\frac{25}{\sqrt{29}}=\frac{25\sqrt{29}}{29}\)cm
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(BC=BH+HC=5\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=2\sqrt{5}\left(cm\right)\\AC=\sqrt{CH\cdot BC}=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b, Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=2\left(cm\right)\)
a: BC=4+1=5(cm)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{5}\left(cm\right)\\AC=\sqrt{5}\left(cm\right)\end{matrix}\right.\)
b: \(AH=\sqrt{HB\cdot HC}=2\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(BC=BH+HC=8\left(cm\right)\)
Áp dụng HTL:
\(\left\{{}\begin{matrix}AB^2=2\cdot8=16\left(cm\right)\\AC^2=2\cdot6=12\left(cm\right)\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Áp dụng HTL trong tam giác ABC vuông tại A có đường cao AH:
\(AH^2=BH.HC\Rightarrow AH=\sqrt{BH.HC}=\sqrt{2.6}=2\sqrt{3}\left(cm\right)\)
Áp dụng đ/lý Pytago trong tam giác vg ABH và AHC
\(\left\{{}\begin{matrix}AB^2=AH^2+HB^2=16\\AC^2=AH^2+HC^2=48\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}AB=4cm\\AC=4\sqrt{3}cm\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
Ai giúp tui với
Theo đề ra: HB = 1cm
HC = 2cm
Ta có: BC = HB + HC
BC = 1cm + 2cm
BC = 3cm
Theo đề ra: ΔABC vuông tại A, đường cao AH
\(\rightarrow AB^2=BH.BC=1.3=3\)
\(\rightarrow AB=\sqrt{3}\)
\(\rightarrow AC^2=CH.BC=2.3=6\)
\(\rightarrow AC=\sqrt{6}\)