Cho ΔABC có góc B là góc tù. Tia phân giác góc ngoài tại A cắt BC kéo dài tại M. T...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=21^2+28^2=1225\)

hay BC=35(cm)

Vậy: BC=35cm

Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔAHB\(\sim\)ΔCAB(g-g)

Suy ra: \(\dfrac{AH}{CA}=\dfrac{AB}{CB}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{28}=\dfrac{21}{35}\)

hay AH=16,8(cm)

Vậy: BC=35cm; AH=16,8cm

a) Xét tứ giác AMHN có 

\(\widehat{NAM}=90^0\)(\(\widehat{BAC}=90^0,N\in AC,M\in AB\))

\(\widehat{AMH}=90^0\left(HM\perp AB\right)\)

\(\widehat{ANH}=90^0\left(HN\perp AC\right)\)

Do đó: AMHN là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

1: Xét ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC

Do đó: ΔAMB=ΔAMC

=>\(\hat{AMB}=\hat{AMC}\)

\(\hat{AMB}+\hat{AMC}=180^0\) (hai góc kề bù)

nên \(\hat{AMB}=\hat{AMC}=\frac{180^0}{2}=90^0\)

=>AM⊥BC tại M

2: Xét ΔNAD và ΔNCM có

\(\hat{NAD}=\hat{NCM}\) (hai góc so le trong, AD//CM)

NA=NC

\(\hat{AND}=\hat{CNM}\) (hai góc đối đỉnh)

Do đó: ΔNAD=ΔNCM

=>AD=CM

Xét tứ giác AMCD có

AD//CM

AD=CM

do đó: AMCD là hình bình hành

Hình bình hành AMCD có \(\hat{AMC}=90^0\)

nên AMCD là hình chữ nhật