K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Ta có: \(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+cd< bc+dc\)

\(\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\) (1)

\(ad< bc\)

\(\Rightarrow ad+ab< bc+ab\)

\(\Rightarrow a\left(b+d\right)< b\left(a+c\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\) (2)

Từ (1), (2) \(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\left(đpcm\right)\)

18 tháng 6 2017

Ta có :

\(\dfrac{a}{b}< \dfrac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ad+ab< bc+ab\Rightarrow a\left(d+b\right)< b\left(c+a\right)\)

\(\Rightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(1\right)\)

Lại có :

\(ad< bc\Rightarrow ad+cd< bc+cd\Rightarrow d\left(a+c\right)< c\left(b+d\right)\)

\(\Rightarrow\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\rightarrowđpcm\)

Ta có: BC > AB > AC ( vì 8cm > 6cm >5cm)

=> \(\widehat{A}>\widehat{C}>\widehat{B}\)(Quan hệ giữa góc và cạch đối diện trong tam giác)

=> D là đáp án đúng

=> chọn B

nhầm nhé bạn mik viết nhầm

=> chọn D

6 tháng 5 2018

c)GÓc A < góc C < góc B

6 tháng 5 2018

góc A>gócC>gócB(D)

28 tháng 2 2018

a) Xét tam giác vuông ABC, áp dụng định lí Pi-ta-go ta có:

\(BC^2=AB^2+AC^2=6^2+8^2=100\Rightarrow BC=10\left(cm\right)\)

b) Ta có do tam giác ABC vuông tại A nên \(\widehat{ABC}+\widehat{ACB}=90^o\)

Lại có \(\widehat{IBC}=\frac{\widehat{ABC}}{2};\widehat{ICB}=\frac{\widehat{ACB}}{2}\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{90^o}{2}=45^o\)

Xét tam giác BIC có \(\widehat{IBC}+\widehat{ICB}=45^o\) nên \(\widehat{BIC}=180^o-45^o=135^o\)

c) Kẻ DH vuông góc BC tại H.

Ta có ngay \(\Delta BAD=\Delta BHD\)   (Cạnh huyền - góc nhọn)

\(\Rightarrow AD=HD\)

Lại có : theo quan hệ giữa đường vuông góc với đường xiên thì HD < DC

Suy ra AD < DC

d) Gọi K là chân đường vuông góc hạ từ I xuống BC.

Ta có I là giao điểm của ba đường phân giác nên IE = IF = IK

Ta có: \(S_{ABC}=\frac{1}{2}AB.AC=24\left(cm^2\right)\)

Lại có \(S_{ABC}=S_{ABI}+S_{BCI}+S_{CIA}=\frac{1}{2}AB.EI+\frac{1}{2}AC.IF+\frac{1}{2}BC.IK\)

\(=\frac{1}{2}\left(AB+BC+CA\right).EI=12.EI\)

Vậy nên \(12.EI=24\Rightarrow EI=2\left(cm\right)\)

Ta thấy AEIF là hình vuông nên AE = AF = 2cm.