Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Cho A(x)=\(\dfrac{x^4-1}{2x^3-3x^2-8}\)=0
=>x4-1=0
<=>x4=1
<=>x=1 hoặc x=-1(1)
-Thử lại vào A thõa mãn A=0
Cho B(x)=x2+2x=0
<=>x(x+2)=0
<=>x=0 hoặc x=2(2)
Từ (1) và (2) => 2 đa thức không có nghiệm chung
![](https://rs.olm.vn/images/avt/0.png?1311)
- Để tìm nghiệm của đa thức \(F\left(x\right)\), ta cho đa thức \(F\left(x\right)=0\).
\(\Leftrightarrow3x-6=0\Leftrightarrow3x=6\Leftrightarrow x=2\)
Vậy nghiệm của đa thức \(F\left(x\right)\) là \(2\).
- Để tìm nghiệm của đa thức \(H\left(x\right)\), ta cho đa thức \(H\left(x\right)=0\).
\(\Leftrightarrow-5x+30=0\Leftrightarrow-5x=-30\Leftrightarrow x=6\)
Vậy nghiệm của đa thức \(H\left(x\right)\) là \(6\).
- Để tìm nghiệm của đa thức \(G\left(x\right)\), ta cho đa thức \(G\left(x\right)=0\).
\(\Leftrightarrow\left(x-3\right)\left(16-4x\right)=0\Leftrightarrow\left[{}\begin{matrix}x-3=0\\16-4x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\4x=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy nghiệm của đa thức \(G\left(x\right)\) là \(3\) và \(4\).
- Để tìm nghiệm của đa thức \(K\left(x\right)\), ta cho đa thức \(K\left(x\right)=0\).
\(\Leftrightarrow x^2-81=0\Leftrightarrow x^2=81\Leftrightarrow x=\pm9\)
Vậy nghiệm của đa thức \(K\left(x\right)\) là \(-9\) và \(9\).
- Để tìm nghiệm của đa thức \(A\left(x\right)\), ta cho đa thức đa thức \(A\left(x\right)=0\).
\(\Leftrightarrow x^2+4=0\Leftrightarrow x^2=-4\)
Vì \(x^2\ge0\) với mọi \(x\)
nên \(x^2>-4\) với mọi \(x\)
Vậy đa thức \(A\left(x\right)\) vô nghiệm.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(f\left(x\right)=9-3x^3-2x^3+x^2+4x-6\)
\(g\left(x\right)=x^3-6x^3+2x^3+4x^2+7x-3x+3\)
\(\Rightarrow f\left(x\right)-g\left(x\right)=9-3x^3-2x^3+x^2+4x-6-\left(x^3-6x^3+2x^3+4x^2+7x-3x+3\right)\)
Bạn tự phá dấu và trừ ra nhé, ghi ở đây dài lắm, kết quả bằng :
\(-2x^3-3x^2\)
Ta có:
\(f\left(x\right)=-5x^3+x^2+4x+3\)
\(g\left(x\right)=-3x^3+4x^2+4x+3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left\{{}\begin{matrix}P\left(x\right)=x+x^2-x^3+2x^3+2=x^3+x^2+x+2\\Q\left(x\right)=1+3x-x^2-4x+x^3=x^3-x^2-x+1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}P\left(x\right)+Q\left(x\right)=2x^3+3\\P\left(x\right)-Q\left(x\right)=2x^2+2x+1\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(2x^2-4x+7\)
\(=2\left(x^2-2x+\dfrac{7}{2}\right)\)
\(=2\left(x^2-x-x+\dfrac{7}{2}\right)\)
\(=2\left(x^2-x-x+1+\dfrac{5}{2}\right)\)
\(=2\left[\left(x-1\right)^2+\dfrac{5}{2}\right]\)
\(=2\left(x-1\right)^2+5\)
Vì \(2\left(x-1\right)^2\ge0\Rightarrow2\left(x-1\right)^2+\dfrac{5}{2}\ge\dfrac{5}{2}>0\)
\(\Rightarrow\) đt vô nghiệm.
Mấy câu kia cũng tách tương tự.
" Giữ nguyên hạng tử bậc hai chia đội hạng tử bậc nhất cân bằng hệ số để đạt được tỉ lệ thức"
Chúc bạn học tốt!!!
![](https://rs.olm.vn/images/avt/0.png?1311)
Chắc cậu giải được câu a) rồi nhỉ ?
Mình giải câu b) nha.
P(x)=-Q(x)\(\Rightarrow\)3x3+x2-3x+7=3x3+x2+x+15
-3x+7= x+15
-4x =8
x =-2
Vậy x=-2 để P(x)=-Q(x)
Chúc bạn học tốt.
a) \(A\left(x\right)+B\left(x\right)=4x^5-2x^2-1\)
\(\Rightarrow B\left(x\right)=4x^5-2x^2-1-A\left(x\right)\)
\(\Rightarrow B\left(x\right)=4x^5-2x^2-1-\left(2x^4-3x^3+\dfrac{1}{2}-4x\right)\)
\(B\left(x\right)=4x^5-2x^2-1-2x^4+3x^3-\dfrac{1}{2}+4x\)
Vậy \(B\left(x\right)=4x^5-2x^4+3x^3-2x^2+4x-\dfrac{3}{2}\)
b) \(A\left(x\right)-C\left(x\right)=2x^3\)
\(\Rightarrow C\left(x\right)=2x^3+A\left(x\right)\)
\(\Rightarrow C\left(x\right)=2x^3+2x^4-3x^3+\dfrac{1}{2}-4x\)
Vậy \(C\left(x\right)=2x^4-x^3-4x+\dfrac{1}{2}\)
a)
Có: