Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Tổng số đo các góc của một đa giác n cạnh = \((7-2).180^0\) = \(900^0\)
b)Số đo mỗi góc của ngũ giác đều là : \(\frac{(5-2).180^0}{5}\)= \(108^0\)
Số đo mỗi góc của lục giác đều là \(\frac{(6-2).180^0}{6}\)= \(120^0\)

Ta có: x2 – x – 12 = x2 – x – 16 + 4
= (x2 – 16) – (x – 4)
= (x – 4).(x + 4) – (x – 4)
= (x – 4).(x + 4 – 1)
= (x – 4).(x + 3)

a: \(\frac{A}{B}=\frac{x^2y^4+2x^3y^{n}}{x^{n}y^2}=x^{2-n}\cdot y^2+2\cdot x^{3-n}\cdot y^{n-2}\)
Để A chia hết cho B thì \(\begin{cases}2-n\ge0\\ 3-n\ge0\\ n-2\ge0\end{cases}\Rightarrow\begin{cases}n\le2\\ n\le3\\ n\ge2\end{cases}\Rightarrow\begin{cases}n\le2\\ n\ge2\end{cases}\)
=>n=2
b: \(\frac{A}{B}=\frac{5x^8y^4-9x^{2n}y^6}{-x^7y^{n}}=-5xy^{4-n}+9x^{2n-7}y^{6-n}\)
Để A chia hết cho B thì \(\begin{cases}4-n\ge0\\ 2n-7\ge0\\ 6-n\ge0\end{cases}\Rightarrow\begin{cases}n\le4\\ n\ge\frac72\\ n\le6\end{cases}\Rightarrow\frac72\le n\le4\)
mà n là số tự nhiên
nên n=4
c: \(\frac{A}{B}=\frac{12x^8y^{2n}+25x^{12}y^5z^2}{4x^{3n}y^4}=3x^{8-3n}y^{2n-4}+\frac{25}{4}x^{12-3n}yz^2\)
Để A chia hết cho B thì \(\begin{cases}8-3n\ge0\\ 2n-4\ge0\\ 12-3n\ge0\end{cases}\Rightarrow\begin{cases}3n\le8\\ n\ge2\\ 3n\le12\end{cases}\)
=>\(2\le n\le\frac83\)
mà n là số tự nhiên
nên n=2
d: \(\frac{A}{B}=\frac{-13x^{17}y^{2n-3}+22x^{16}y^7}{-7x^{3n+1}y^6}=\frac{13}{7}x^{17-3n-1}y^{2n-3-6}-\frac{22}{7}x^{16-3n-1}y\)
\(=\frac{13}{7}\cdot x^{16-3n}y^{2n-9}-\frac{22}{7}x^{15-3n}y\)
Để A chia hết cho B thì \(\begin{cases}16-3n\ge0\\ 2n-9\ge0\\ 15-3n\ge0\end{cases}\Rightarrow\begin{cases}3n\le16\\ 2n\ge9\\ 3n\le15\end{cases}=>\begin{cases}n<=\frac{16}{3}\\ n\ge\frac92\\ n\le5\end{cases}\)
=>\(\frac92\le n\le5\)
mà n là số tự nhiên
nên n=5
e: \(\frac{A}{B}=\frac{20x^5y^{2n}-10x^4y^{3n}+15x^5y^6}{3x^2y^{n+1}}\)
\(=\frac{20}{3}\cdot x^{5-2}\cdot y^{2n-n-1}-\frac{10}{3}\cdot x^{4-2}\cdot y^{3n-n-1}+5x^3y^{6-n-1}\)
\(=\frac{20}{3}\cdot x^3\cdot y^{n-1}-\frac{10}{3}x^2y^{2n-1}+5x^3y^{6-n}\)
Để A chia hết cho B thì \(\begin{cases}n-1\ge0\\ 2n-1\ge0\\ 6-n\ge0\end{cases}\Rightarrow\begin{cases}n\ge1\\ n\ge\frac12\\ n\le6\end{cases}\Rightarrow1\le n\le6\)
mà n là số tự nhiên
nên n∈{1;2;3;4;5;6}

Giải
a) Vẽ một n - giác lồi rồi vẽ các đường chéo xuất phát từ một đỉnh của n - giác lồi đó, ta được (n - 2) tam giác
Tổng các góc của hình n - giác lồi bằng tổng các góc của (n - 2) tam giác, tức là có số đo bằng (n - 2).1800
Hình n - giác đều có n góc bằng nhau nên mỗi góc có số đo là \(\frac{\left(n-2\right).180^{0^{ }}}{n}\)
b) Với hình lục giác đều ta có n = 6, nên số đo góc của nó là\(\frac{\left(6-2\right).180^0}{6}=120^0\)
Với hình bát giác đều ta có n = 8, nên số đo góc của nó là \(\frac{\left(8-2\right).180^0}{8}=135^0\)

4.Nếu\(|x-1|=0\)
thì x = 1.=> lx+2l = 3 và lx+3l = 4.
=>lx-1l+lx+2l+lx+3l=0+3+4=7.
Nếu \(|x+2|=0\)
thì x=-2 =>lx-1l=3 và lx+3l=1.
=>lx-1l+lx+2l+lx+3l=0+3+1=4.
Nếu \(|x+3|=0\)
thì x=-3 =>lx-1l=4 và lx+2l=1.
=>lx-1l+lx+2l+lx+3l=5.
Vậy \(Min_{\text{lx-1l+lx+2l+lx+3l}}=4\).

Bài này lạ quá. Hình vẽ là một tứ giác lõm.
Mình hướng dẫn ngắn gọn lời giải
a, Hai tam giác trên bằng nhau theo trường hợp cạnh - cạnh - cạnh
b, Có góc QMN = 80 độ
=> \(\widehat{PMQ}=\widehat{QMN}=\frac{360^o-80^o}{2}=140^o\)
CÓ: \(\widehat{QPM}=\widehat{MPN=\frac{60^o}{2}}=30^o\)
Xét tam giác PMQ biết góc PMQ =140 độ, góc PQM = 30 độ
=> Góc PQM = 10 độ
Mà góc PQM = góc PNM => Góc PNM = 10 độ
d, Xét tam giác QPM cân ở P ( PQ = PN)
=> Đường phân giác PM đồng thời là đường trung trực của đoạn thẳng NQ
e, Xét tam giác PQM có QN là đường trung trực của PM
=> Tam giác PQM cân ỏ Q => QP=PN=QM
Mà QM =MN
=> Tứ giác MNQP có 4 cạnh bằng nhau.

Bài 1:
\(a.5^5-5^4+5^3\)
\(=5^3.5^2-5^3.5+5^3.1\)
\(=5^3\left(5^2-5+1\right)\)
\(=5^3.21\)
\(=5^3.3.7⋮7\)
\(\)
\(\)
\(\)
Bài 2:
\(a.32< 2^n< 128\)
\(\Rightarrow2^5< 2^n< 2^7\)
\(\Rightarrow n=2\)
\(b.9.27\le3^n\le243\)
\(\Rightarrow3^2.3^3\le3^n\le3^5\)
\(\Rightarrow3^5\le3^n\le3^5\)
\(\Rightarrow n=5\)
Tổng số đo các góc của đa giác n cạnh là: 140.n
Mặt khác đa giác n cạnh thì có tổng số đo các góc của đa giác là: (n-2). 180
Suy ra: 140n = (n – 2). 180
⇔ 140n = 180n - 360
⇔ 40n = 360 ⇔ n = 9
Chọn đáp án A