Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\) Gọi điểm cố định (d) luôn đi qua là \(A\left(x_0;y_0\right)\)
\(\Leftrightarrow y_0=\left(m-2\right)x_0+2\Leftrightarrow mx_0-2x_0+2-y_0=0\\ \Leftrightarrow\left\{{}\begin{matrix}x_0=0\\2-2x_0-y_0=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_0=0\\y_0=2\end{matrix}\right.\Leftrightarrow A\left(0;2\right)\)
Vậy \(A\left(0;2\right)\) là điểm cố định mà (d) lun đi qua
\(b,\) PT giao Ox,Oy: \(y=0\Leftrightarrow x=\dfrac{2}{2-m}\Leftrightarrow B\left(\dfrac{2}{2-m};0\right)\Leftrightarrow OB=\dfrac{2}{\left|m-2\right|}\\ x=0\Leftrightarrow y=2\Leftrightarrow C\left(0;2\right)\Leftrightarrow OC=2\)
Gọi H là chân đường cao từ O đến (d) \(\Leftrightarrow OH=1\)
Áp dụng HTL: \(\dfrac{1}{OH^2}=1=\dfrac{1}{OB^2}+\dfrac{1}{OC^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
\(\Leftrightarrow m^2-4m+4+1=4\\ \Leftrightarrow m^2-4m+1=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2+\sqrt{3}\\m=2-\sqrt{3}\end{matrix}\right.\)
\(c,\) Áp dụng HTL: \(\dfrac{1}{OH^2}=\dfrac{1}{OC^2}+\dfrac{1}{OB^2}=\dfrac{\left(m-2\right)^2}{4}+\dfrac{1}{4}\)
Đặt \(OH^2=t\)
\(\Leftrightarrow\dfrac{1}{t}=\dfrac{m^2-4m+5}{4}\Leftrightarrow t=\dfrac{4}{\left(m-2\right)^2+1}\le\dfrac{4}{0+1}=4\\ \Leftrightarrow OH\le2\\ OH_{max}=2\Leftrightarrow m=2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1,y=\left(m-2\right)x+3+1\) \(\left(d\right)\)
\(\left(d\right)\) đi qua \(A\left(1;-1\right)\)
\(\Rightarrow-1=m-2+m+1\)
\(\Rightarrow m=0\)
\(2,y=1-3x\left(d'\right)\)
Để: \(\left(d\right)//\left(d'\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=a'\\b\ne b'\end{cases}}\Leftrightarrow\hept{\begin{cases}m-2=-3\\m+1\ne1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=-1\\m\ne0\end{cases}}\)
\(3,\) Gọi \(A\) là giao điểm của \(\left(d\right)\) với \(Ox\)
\(B\) là giao điểm của \(\left(d\right)\) với \(Oy\)
Tọa độ \(A:\hept{\begin{cases}\left(m-2\right)x+m+1=0\\y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{m+1}{2-m}\\y=0\end{cases}}\)
Tọa độ \(B:\hept{\begin{cases}x=0\\m+1=y\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=m+1\end{cases}}\)
Độ dài \(OA:\sqrt{\left(\frac{m+1}{2-m}\right)^2}=|\frac{m+1}{2-m}|\)
Độ dài \(OB:\sqrt{\left(m+1\right)^2}=|m+1|\)
Kẻ \(OH\perp AB\) ta được: \(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}\)
\(\Leftrightarrow1=\frac{1}{\left(\frac{m+1}{2-m}\right)^2}+\frac{1}{\left(m+1\right)^2}\)
\(\Leftrightarrow1=\frac{\left(2-m\right)^2}{\left(m+1\right)^2}+\frac{1}{\left(m+1\right)^2}\)
\(\Leftrightarrow\left(m+1\right)^2=m^2-4m+4+1\)
\(\Leftrightarrow m^2+2m+1=m^2-4m+5\)
\(\Leftrightarrow m=\frac{2}{3}\)
\(\Leftrightarrow mx+2x+my-y-1=0\)
\(\Leftrightarrow m\left(x+y\right)+2x-y-1=0\)
\(\Rightarrow d\) luôn đi qua điểm cố định A có tọa độ là nghiệm của hệ:
\(\left\{{}\begin{matrix}x+y=0\\2x-y-1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\y=-\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow A\left(\frac{1}{3};-\frac{1}{3}\right)\)
Gọi H là hình chiếu vuông góc của O lên d \(\Rightarrow OAH\) vuông tại H
\(\Rightarrow OH\le OA\Rightarrow OH_{max}=OA\) khi \(H\) trùng A \(\Rightarrow d\perp OA\)
Phương trình OA có dạng: \(y=-x\)
\(\Rightarrow\) d có hệ số góc bằng 1
\(\left(m+2\right)x+\left(m-1\right)y-1=0\Rightarrow y=\frac{m+2}{1-m}x-\frac{1}{1-m}\)
\(\Rightarrow\frac{m+2}{1-m}=1\Rightarrow m+2=1-m\Rightarrow m=-\frac{1}{2}\)