Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tử số cũng biến thiên theo ha, hb, hc ...Suy luận được như trên chỉ khi Tử số là một số A không đổi.
Gọi S là diện tích tam giác, r là bánh kính đường tròn nội tiếp
Ta có
ha=2S/a =r(a+b+c)/a
=> ha^2 + hb^2 + hc^2 = r^2(a+b+c)^2 * (1/a^2+1/b^2+1/c^2)}
=> T = (a+b+c)^2/(ha^2+hb^2+hc^2) =
=1/r^2/(1/a^2+1/b^2+1/c^2)
Ta c/m (1/a^2+1/b^2+1/c^2) <=1/4r^2 (*)
=> T<=1/4
=> Max(T) = 1/4 Khi tam giác đều
c/m bất đẳng thức (*)
S = pr
S= √p(p-a)(p-b)(p-c)
=> pr= √p(p-a)(p-b)(p-c)
=> (pr^2) = (p-a)(p-b)(p-c)
=> 1/r^2 = p/(p-a)(p-b)(p-c) = 1/((p-a)(p-b) + 1/(p-b)(p-c) + 1/(p-a)(p-c)
=> 1/4r^2 = 1/[a^2 - (b-c)^2] + 1/[b^2 - (a-c)^2] + 1/[c^2 - (b-a)^2] >= 1/a^2 + 1/b^2 + 1/c^2
=> 1/4r^2>= 1/a^2 + 1/b^2 + 1/c^2
=> (1/r^2)/ 1/a^2 + 1/b^2 + 1/c^2 >= 1/4
=> Dấu bằng xảy ra khi ha = hb = hc => Khi đó ABC là tam giác đều
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu hỏi của Fresh - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo lời giải tại link trên nhé.
Đặt BC = a, CA = b, AB = c.
Khi đó ma, ha là các đường tương ứng với a.
Gọi A' là trung điểm của BC. Các điểm B', C' được xđ tương tự
Ta có: \(\sum\frac{m_a}{h_a}=\frac{\sum m_aa}{2S}\le\frac{\sum\left(R+OA'\right)a}{2S}=\frac{\sum Ra+2S}{2S}=\frac{R\left(a+b+c\right)}{2S}+1\)
Do đó ta chỉ cần chứng minh: \(\frac{R}{r}\ge\frac{R\left(a+b+c\right)}{2S}\)
\(\Leftrightarrow2S\ge\left(a+b+c\right)r\)
Lại có: \(r=\frac{2S}{a+b+c}\)
Do đó điều trên luôn đúng. Dấu "=" xảy ra khi và chỉ khi ABC là tg đều
dạ em cảm ơn ạ