Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài giải
Gọi hệ trục Oxyz với A(0;0;0), B(a;0;0), C(a;a;0), D(0;a;0). Gọi S(p;q;h).
SA = SB = a:
p² + q² + h² = a²
(p - a)² + q² + h² = a² ⇒ p = a/2
SC = a√3:
a²/4 + (q - a)² + h² = 3a²
Từ SA: q² + h² = 3a²/4 ⇒ a²/4 + q² - 2aq + a² + h² = 3a²
2a² - 2aq = 3a² ⇒ q = -a/2 ⇒ h² = a²/2 ⇒ h = a√2/2
S(a/2; -a/2; a√2/2)
H(a/4; -a/4; a√2/4), K(3a/4; -a/4; a√2/4)
M(x; x; 0), 0 ≤ x ≤ a
N(a; t; 0) ∈ BC
HK = (a/2; 0; 0)
HM = (x - a/4; x + a/4; -a√2/4)
n = HK × HM = (0; a²√2/8; a/2(x + a/4))
Mặt phẳng (HKM): (a²√2/8)(y + a/4) + (a/2)(x + a/4)(z - a√2/4) = 0
Với N(a; t; 0): t = x ⇒ N(a; x; 0)
HK = a/2, MN = a - x
d = √[(x + a/4)² + a²/8]
S = (a/2 + a - x)/2 × d = (3a/2 - x)/2 × √[(x + a/4)² + a²/8]
Giải S'(x) = 0 ⇒ x = 5a/8
Kết luận: x = 5a/8 thì diện tích HKMN nhỏ nhất
Cho mình xin 1 tick với ạ

bn ơi K thuộc SD hả ? ... nếu vậy thì MK sẽ không thể song song với mặt phẳng ( SBC) đâu nhé :)

a.
Do O là tâm hbh \(\Rightarrow\) O là trung điểm AC
\(\Rightarrow OJ\) là đường trung bình tam giác SAC
\(\Rightarrow OJ||SA\)
Mà \(SA\in\left(SAC\right)\Rightarrow OJ||\left(SAC\right)\)
\(SA\in\left(SAB\right)\Rightarrow OJ||\left(SAB\right)\)
b. O là trung điểm BD, I là trung điểm BC
\(\Rightarrow OI\) là đườngt rung bình tam giác BCD
\(\Rightarrow OI||CD\)
Mà \(CD\in\left(SCD\right)\Rightarrow OI||\left(SCD\right)\)
Tương tự ta có IJ là đường trung bình tam giác SBC \(\Rightarrow IJ||SB\Rightarrow IJ||\left(SBD\right)\)
c. Ta có I là trung điểm BC, O là trung điểm AC
\(\Rightarrow M\) là trọng tâm tam giác ABC
\(\Rightarrow BM=\dfrac{2}{3}BO=\dfrac{2}{3}.\dfrac{1}{2}BD=\dfrac{1}{3}BD\)
\(\Rightarrow\dfrac{BM}{BD}=\dfrac{1}{3}\)
Theo giả thiết \(SK=\dfrac{1}{2}KD=\dfrac{1}{2}\left(SD-SK\right)\Rightarrow SK=\dfrac{1}{3}SD\)
\(\Rightarrow\dfrac{SK}{SD}=\dfrac{1}{3}=\dfrac{BM}{BD}\Rightarrow KM||SB\) (Talet đảo)
\(\Rightarrow MK||\left(SBC\right)\)

\(\Rightarrow\dfrac{OC}{CA}=\dfrac{CI}{CS}\Rightarrow OI\) // \(SA\)
\(OI\subset\left(BID\right)\Rightarrow SA\) // \(\left(BID\right)\)
Nếu thêm phần d là : xác định giao điểm K của BG và (SAC).Tính KB/KG thì làm kiểu gì ạ?

a: Gọi O là giao điểm của AC và BD
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
Gọi K là giao điểm của AB và CD
\(K\in AB\subset\left(SAB\right)\)
\(K\in CD\subset\left(SCD\right)\)
Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)
mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)
nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)
b: Xét (SAD) và (SBC) có
\(S\in\left(SAD\right)\cap\left(SBC\right)\)
AD//BC
Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC
c: Chọn mp(SCD) có chứa CD
\(N\in SC\subset\left(SCD\right)\)
\(P\in SD\subset\left(SCD\right)\)
Do đó: \(NP\subset\left(SCD\right)\)
mà \(NP\subset\left(MNP\right)\)
nên (SCD) giao (MNP)=NP
Gọi E là giao điểm của CD với NP
=>E là giao điểm của CD với (MNP)
Chọn mp(SBD) có chứa MP
\(BD\subset\left(SBD\right)\)
\(BD\subset\left(ABCD\right)\)
Do đó: \(BD\subset\left(SBD\right)\cap\left(ABCD\right)\)
Gọi F là giao điểm của MP với BD
=>F là giao điểm của MP với (ABCD)
a: \(O=AC\cap BD\)
=>\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)
=>\(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)
Xét (SAB) và (SCD) có
AB//CD
\(S\in\left(SAB\right)\cap\left(SCD\right)\)
Do đó: \(\left(SAB\right)\cap\left(SCD\right)=xy\); xy đi qua S và xy//AB//CD
b: Chọn mp(SBD) có chứa BM
(SBD) giao (SAC)=SO
Gọi I là giao điểm của SO với BM
=>I là giao điểm của BM với (SAC)