
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(A=\left\{x\in Z/-2\le x\le5\right\}=\left[-2;5\right]\)
\(B=\){x∈Z/3/2 </x/≤5}= nửa đoạn 3/2;5

Lời giải:
Áp dụng BĐT AM-GM ta có:
\(x^2+y^3\geq x^3+y^4\)
\(\Rightarrow x^2+y^3+y^2\geq x^3+y^4+y^2\geq x^3+2\sqrt{y^6}\)
\(\Leftrightarrow x^2+y^3+y^2\geq x^3+2y^3\Leftrightarrow x^2+y^2\geq x^3+y^3(1)\)
Áp dụng BĐT Bunhiacopxky:
\((x^3+y^3)(x+y)\geq (x^2+y^2)^2(2)\)
Từ \((1); (2)\Rightarrow (x^2+y^2)(x+y)\geq (x^3+y^3)(x+y)\geq (x^2+y^2)^2\)
\(\Leftrightarrow x+y\geq x^2+y^2(3)\)
Theo Bunhiacopxky: \((x^2+y^2)(1+1)\geq (x+y)^2(4)\)
Từ \((3); (4)\Rightarrow x+y\geq \frac{(x+y)^2}{2}\Rightarrow x+y\leq 2\)
Do đó: \(x^3+y^3\leq x^2+y^2\leq x+y\leq 2\Rightarrow \) đpcm.
Dấu bằng xảy ra khi $x=y=1$


a Cho \(\frac{3}{5}\) sinα= \(\frac{3}{5}\) , \(0< \alpha< \frac{\pi}{2}\). Tính \(\sin\left(\alpha+\frac{\pi}{6}\right)\)\(-\frac{4}{5}\) sinα= \(-\frac{4}{5}\), \(\frac{\pi}{2}< \alpha< \pi\) Tính \(\cos\left(\alpha-\frac{\pi}{3}\right)\), #Hỏi cộng đồng OLM #Toán lớp 10

\(A=\left\{-2;-1;0;1;2;3;4;5\right\}\)
\(B=\left\{-2;2;-3;3;-4;4;-5;5\right\}\)
\(C=\left\{1;2\right\}\)