Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Một cửa hàng ngày thứ nhất bán 180 tạ gạo, ngày thứ hai bán 270 tạ gạo , ngày thứ ba bán kém hơn ngày thứ hai một nửa .Hỏi trung bình mỗi ngày cửa hàng bán được bao nhiêu tạ gạo ?
1) Xét hiệu :
\(\left(x_1+x_2+x_3\right)\left(y_1+y_2+y_3\right)-3\left(x_1y_1+x_2y_2+x_3y_3\right).\)
\(=x_1\left(y_1+y_2+y_3\right)-3x_1y_1+x_2\left(y_1+y_2+y_3\right)-3x_2y_2+x_3\left(y_1+y_2+y_3\right)-3x_3y_3.\)
\(=x_1\left(y_2+y_3-2y_1\right)+x_2\left(y_1+y_3-2y_2\right)+x_3\left(y_1+y_2-2y_3\right)\)
\(=x_1\left[\left(y_2-y_1\right)-\left(y_1-y_3\right)\right]+x_2\left[\left(y_3-y_2\right)-\left(y_2-y_1\right)\right]+x_3\left[\left(y_1-y_3\right)-\left(y_3-y_2\right)\right]\)
\(=\left(y_2-y_1\right)\left(x_1-x_2\right)+\left(y_1-y_3\right)\left(x_3-x_1\right)+\left(y_3-y_2\right)\left(x_2-x_3\right)\le0\)
Vì \(x_1\le x_2\le x_3;y_1\le y_2\le y_3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
ý là giờ phải giải cái đầu rồi thay vào cái phía D á bn
![](https://rs.olm.vn/images/avt/0.png?1311)
2. ĐK: \(x\ge-5\)
\(\Leftrightarrow\left(x+5-6\sqrt{x+5}+9\right)+\left(x^2-8x+16\right)=0\)
\(\Leftrightarrow\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2=0\)
\(\forall x\ge-5\) ta luôn có \(\left(\sqrt{x+5}-3\right)^2+\left(x-4\right)^2\ge0\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\sqrt{x+5}-3=0\\x-4=0\end{cases}}\) \(\Leftrightarrow\) x = 4 (nhận)
![](https://rs.olm.vn/images/avt/0.png?1311)
áp dụng bất đẳng thức Cauchy ta có :
\(\frac{\left(x-1\right)^2}{z}+\frac{z}{4}\ge2\sqrt{\frac{\left(x-1\right)^2}{z}\frac{z}{4}}=|x-1|=1-x.\)
\(\frac{\left(y-1\right)^2}{x}+\frac{x}{4}\ge2\sqrt{\frac{\left(y-1\right)^2}{x}\frac{x}{4}}=|y-1|=1-y.\)
\(\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge2\sqrt{\frac{\left(z-1\right)^2}{y}\frac{y}{4}}=|z-1|=1-z.\)
\(\Rightarrow\frac{\left(x-1\right)^2}{z}+\frac{z}{4}+\frac{\left(y-1\right)^2}{x}+\frac{x}{4}+\frac{\left(z-1\right)^2}{y}+\frac{y}{4}\ge1-x+1-y+1-z.\)
\(\Leftrightarrow\frac{\left(x-1\right)^2}{z}+\frac{\left(y-1\right)^2}{x}+\frac{\left(z-1\right)^2}{y}\ge3-\left(x+y+z\right)-\frac{x+y+z}{4}=3-2-\frac{2}{4}=\frac{1}{2}.\)
Vậy GTNN của \(A=\frac{1}{2}\Leftrightarrow x=y=z=\frac{2}{3}.\)
1. Cho 3 số thực x,y,z thỏa mãn x+y+z=xyz và x,y,z>1
Tìm GTNN của P= x-1/y2 +y-1/x2 + x-1/x2
Giải
Từ gt⇒1xy+1yz+1zx=1⇒1xy+1yz+1zx=1
Theo AM-GM ta có:
P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥√3∑1xy+∑1xy−2=√3−1P=∑(x−1)+(y−1)y2−∑1y+∑1y2=∑(x−1)(1x2+1y2)−∑1y+∑1y2≥∑(x−1).2xy−∑1y+∑1y2=∑1y+∑1y2−2≥3∑1xy+∑1xy−2=3−1
Dấu = xảy ra⇔x=y=z=1√3
P/S: ĐỀ BÀI TƯƠNG TỰ NÊN BẠN TỰ LÀM NHA !! CHÚC HOK TỐT!
![](https://rs.olm.vn/images/avt/0.png?1311)
Không mất tính tổng quát, ta có thể giả sử \(x\ge y\ge z\).Khi đó:
\(5=x+y+z\le3x\le6\Leftrightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)
Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)
\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)
Do đó:
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{3-x+2\sqrt{2}\sqrt{3-x}+2}\)
\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)
Vì \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x\)
\(=3+2\sqrt{3x-x^2}=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}\)
\(=\left(\sqrt{2}+1\right)^2\)(vì \(\left(x-1\right)\left(2-x\right)\ge0\)theo (*)) nên \(\sqrt{x}+\sqrt{3-x}\ge\sqrt{2}+1\)
Vậy \(A\ge2\sqrt{2}+1\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)
Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\)đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị
![](https://rs.olm.vn/images/avt/0.png?1311)
Không mất tính tổng quát, giả sử: \(x\ge y\ge z\). Khi đó:
\(5=x+y+z\le3x\le6\Rightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)
Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)
\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)
Do đó: \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{x}+\sqrt{y+z+2\sqrt{yz}}\)
\(\ge\sqrt{x}+\sqrt{5-x+2\sqrt{6-2x}}=\sqrt{x}+\sqrt{3-x+2\sqrt{2}.\sqrt{3-x}+2}\)
\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)
Ta có: \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x=3+2\sqrt{3x-x^2}\)
\(=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)(theo (*))
Do đó \(\sqrt{x}+\sqrt{3-x}\ge1+\sqrt{2}\)
Vậy \(A\ge2\sqrt{2}+1\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)
Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\), đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị.