Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bên học24 mình đã xài \(\Delta\) vậy bên này mình sẽ xài HĐT kiểu Cosi như ý bn :))
Áp dụng BĐT \(xy\le\frac{x^2+y^2}{2}\) ta có:
\(x^2+y^2=4+xy\le4+\frac{x^2+y^2}{2}\)
\(\Rightarrow A\le4+\frac{A}{2}\Rightarrow A\le8\)
Đẳng thức xảy ra khi \(x=y=\pm2\)
*)Nếu \(xy\ge0\Rightarrow A\ge4\)
*)Nếu \(xy< 0\). WLOG \(x>0;y< 0\). \(y\rightarrow-z\left(z>0\right)\)
Have \(\frac{A}{4}=\frac{x^2+y^2}{4}=\frac{x^2+y^2}{x^2+y^2-xy}\)
\(=1+\frac{xy}{x^2+y^2+xy}=1-\frac{zx}{x^2+z^2+xz}\)
Áp dụng BĐT AM-GM ta có:
\(\hept{\begin{cases}x^2+z^2\ge2xz\\x^2+z^2+xz\ge3xz\end{cases}}\)\(\Rightarrow\frac{xz}{x^2+z^2+zx}\le\frac{1}{3}\)
\(\Rightarrow\frac{A}{4}=1-\frac{zx}{x^2+z^2+xz}\ge1-\frac{1}{3}=\frac{2}{3}\Rightarrow A\ge\frac{8}{3}\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x=\frac{2}{\sqrt{3}}\\y=-\frac{2}{\sqrt{3}}\end{cases}}\) hoặc \(\hept{\begin{cases}x=-\frac{2}{\sqrt{3}}\\y=\frac{2}{\sqrt{3}}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Do x,y∈Z và 3x+2y=1 ⇒xy<0
3x+2y=1⇔y= -x+\(\dfrac{1-x}{2}\)
Đặt \(\dfrac{1-x}{2}\)=t (t ∈ Z)
⇒x = 1 - 2t ; y = 3t - 1
khi đó : H = t\(^2\) -3t + |t| -1
nếu t ≥ 0⇒ H =( t -1 ) - 2 ≥ - 2
Dấu "=" xảy ra ⇔t=1
nếu t < 0 ⇒ H = t\(^2\) -4t - 1 > -1> -2
vậy GTNN của H là -2 khi t=1⇒ \(\begin{cases}x=-1\\y=2\end{cases}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Cô-si ta có \(x^2+y^2\ge2xy\)
=> \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Mà \(x^2+y^2=1\) nên \(2\ge\left(x+y\right)^2\)
=> \(-\sqrt{2}\le x+y\le\sqrt{2}\)
Do đó GTLN của x+y=\(\sqrt{2}\) <=> \(x=y=\frac{1}{\sqrt{2}}\)
GTNN của x+y=\(-\sqrt{2}\) <=> \(x=y=\frac{1}{-\sqrt{2}}\)
Lời giải:
Áp dụng BĐT AM-GM:
$x^2+y^2\geq 2\sqrt{x^2y^2}=2|xy|\geq 2xy$
$\Rightarrow 3(x^2+y^2)\geq 6xy$
$x^2+9\geq 2\sqrt{9x^2}=2|3x|\geq 6x$
$y^2+9\geq 2\sqrt{9y^2}=2|3y|\geq 6y$
Cộng theo vế các BĐT trên:
$4(x^2+y^2)+18\geq 6(xy+x+y)=90$
$\Rightarrow x^2+y^2=18$
Vậy $A_{\min}=18$ khi $(x,y)=(3,3)$
Sầu Riêng: của em nếu $x,y$ dương thì đúng. Còn trong bài $x,y$ thực thì đến đoạn $(x+y+2)^2\geq 64$ thì không khẳng định $x+y\geq 6$ được nha.