Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Đặt:
\(p = a + b + c , q = a b + b c + c a , r = a^{2} + b^{2} + c^{2} .\)
Khi đó, điều kiện bài toán trở thành:
\(3 r + q = 12.\)
Ta cần chứng minh:
\(22 \textrm{ }\textrm{ } \leq \textrm{ }\textrm{ } \frac{r}{p + q} \textrm{ }\textrm{ } \leq \textrm{ }\textrm{ } 32.\)
Bước 1. Biểu diễn lại mẫu số
Từ hằng đẳng thức:
\(p^{2} = a^{2} + b^{2} + c^{2} + 2 \left(\right. a b + b c + c a \left.\right) = r + 2 q .\)
Vậy:
\(p + q = \left(\right. p^{2} - r \left.\right) + \left(\right. p - r \left.\right) ? ?\)
👉 Ở đây có chút khó khăn: trực tiếp so sánh tỉ số \(\frac{r}{p + q}\) với số nguyên (22,32) là không khớp — vì bài toán gốc em chép có thể bị sai số trong đề.
⛔ Lý do: Với điều kiện \(3 r + q = 12\), thì \(r\) và \(q\) tối đa chỉ cỡ 12, nên tỉ số \(\frac{r}{p + q}\) chắc chắn nhỏ (≤ vài đơn vị). Không thể lớn đến 22 hay 32 được.
Nhận xét
Có thể trong đề gốc:
- Bất đẳng thức cần chứng minh là:
\(\frac{2}{2} \leq \frac{a^{2} + b^{2} + c^{2}}{a + b + c + a b + b c + c a} \leq \frac{3}{2}\)
hoặc tương tự (số 22 và 32 có thể là \(\frac{2}{2}\) và \(\frac{3}{2}\), nhưng bị gõ nhầm khi soạn đề 🤔).
👉 Em kiểm tra lại đề gốc xem có phải dấu ngoặc hay dấu phân số bị lệch khi copy không. Vì theo điều kiện \(3 \left(\right. a^{2} + b^{2} + c^{2} \left.\right) + a b + b c + c a = 12\), chắc chắn kết quả bất đẳng thức phải là những con số nhỏ (dạng \(\frac{2}{2} , \frac{3}{2} , 2 , 3\)), chứ không thể là 22 hoặc 32.

a,b,c đều = 1
vì theo đề bài a,b,c là số dương mà a2 + b2 + c2 + abc =4 vậy nên a,b,c là 1 số cực nhỏ để khi bình phương lên nó có thể cộng với các hạng tử còn lại hơn nữa khi chúng nhân với nhau thì ko đc vượt quá 1 để có thể cộng với a2
b2, c2 để bằng 4
tìm đc a,b,c đều bằng 1 rồi thay vào ab+bc+ca-abc < hoặc bằng 2 là chứng minh đc. Chúc bạn may mắn
:v Bạn biết chứng minh BĐT là gì không vậy, và cho hỏi bạn lớp mấy vậy

Không hiểu sao BĐT dạo này được cập nhật lên khá nhiều,thôi thì làm theo bản năng vậy :))
Do \(a^2+b^2+c^2+abc=4\) nên ta đặt được ẩn phụ dưới dạng
\(a=\frac{2x}{\sqrt{\left(x+y\right)\left(x+z\right)}};b=\frac{2y}{\sqrt{\left(y+z\right)\left(y+x\right)}};c=\frac{2z}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Khi đó BĐT cần chứng minh tương đương với:
\(\Sigma\frac{2xy}{\left(x+y\right)\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}+1\)
Theo AM - GM thì ta dễ dàng có:
\(\frac{2xy}{\left(x+y\right)\sqrt{\left(x+z\right)\left(y+z\right)}}\le\frac{xy}{x+y}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)
\(\Rightarrow LHS\le\Sigma\frac{xy}{\left(x+y\right)\left(x+z\right)}+\Sigma\frac{xy}{\left(x+y\right)\left(y+z\right)}\)
\(=\Sigma\frac{xy}{\left(x+y\right)\left(x+z\right)}+\Sigma\frac{zx}{\left(x+y\right)\left(x+z\right)}\)
\(=\Sigma\frac{x\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}=1+\frac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
BĐT được chứng minh
Cách khác :)))
Theo nguyên lý Dirichlet thì trong 3 số \(a-1;b-1;c-1\) có ít nhất 2 số cùng dấu
Giả sử đó là \(a-1;b-1\)
Khi đó:\(\left(a-1\right)\left(b-1\right)\ge0\Leftrightarrow ab+1\ge a+b\Leftrightarrow abc+c\ge ac+bc\)
Vì vậy \(ab+bc+ca-abc\le ab+bc+ca+c-ac-bc=ab+c\)
Ta sẽ chứng minh \(ab+c\le2\)
Thật vậy !
\(4=a^2+b^2+c^2+abc\ge2ab+c^2+abc\Leftrightarrow4-c^2\ge ab\left(c+2\right)\)
\(\Leftrightarrow ab+c\le2\left(đpcm\right)\)

với x,y >0 ta có : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\Rightarrow\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)..\)
Áp dụng bất đẳng thức trên được:
\(\frac{1}{ab+a+2}=\frac{1}{\left(ab+1\right)+\left(a+1\right)}\le\frac{1}{4}\left(\frac{1}{ab+1}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{abc}{ab+abc}+\frac{1}{a+1}\right)=\frac{1}{4}\left(\frac{c}{c+1}+\frac{1}{a+1}\right)\left(1\right).\)( vì abc = 1 )
Chứng minh tương tự ta được : \(\frac{1}{bc+b+2}\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{b+1}\right)\left(2\right).\)
\(\frac{1}{ac+c+2}\le\frac{1}{4}\left(\frac{b}{b+1}+\frac{1}{c+1}\right)\left(3\right).\)
Cộng vế với vế các BĐT (1), (2) và (3) ta được :
\(P\le\frac{1}{4}\left(\frac{a}{a+1}+\frac{1}{a+1}+\frac{b}{b+1}+\frac{1}{b+1}+\frac{c}{c+1}+\frac{1}{c+1}\right)=\frac{3}{4}.\)( đpcm )
dấu " = " xẩy ra khi a = b = c = 1

Ta có:\(a^5+ab+b^2\ge3a^2b\)
Tương tự ta có:
\(VT\le\frac{1}{\sqrt{3ab\left(a+2c\right)}}+\frac{1}{\sqrt{3bc\left(b+2a\right)}}+\frac{1}{\sqrt{3ca\left(c+2b\right)}}\)
\(=\frac{1}{\sqrt{3}}\left(\sqrt{\frac{c}{c+2a}}+\sqrt{\frac{a}{b+2a}}+\sqrt{\frac{b}{2b+c}}\right)\)
Ta cũng có:\(a+2c=a+c+c\ge\frac{1}{3}\left(\sqrt{a}+2\sqrt{c}\right)^2\)
\(\Rightarrow VT\le\frac{\sqrt{c}}{\sqrt{a}+2\sqrt{c}}+\frac{\sqrt{a}}{\sqrt{b}+2\sqrt{a}}+\frac{\sqrt{b}}{\sqrt{c}+2\sqrt{b}}\)
Đặt \(x=\frac{\sqrt{a}}{\sqrt{c}};y=\frac{\sqrt{b}}{\sqrt{a}};z=\frac{\sqrt{c}}{\sqrt{b}};xyz=1\)
\(\Rightarrow VT\le\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\)
Giả sử \(xy\le1\) thì \(z\ge1\)
Ta có: \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}=\frac{1}{2}\left(\frac{1}{\frac{x}{2}+1}+\frac{1}{\frac{y}{2}+1}\right)+\frac{1}{z+2}\)
\(\le\frac{1}{1\frac{\sqrt{xy}}{2}}+\frac{1}{z+2}\le1\)(Đpcm)
Dấu = khi \(a=b=c=1\)

\(VT=\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{1}{\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{2}{\sqrt{c}}}\right)\le\frac{1}{\sqrt{abc}}\Sigma_{cyc}\left(\frac{\sqrt{a}+\sqrt{b}+2\sqrt{c}}{16}\right)=\frac{1}{\sqrt{abc}}\)
Dấu "=" xay ra khi \(a=b=c=\frac{16}{9}\)
Dựa vào điều kiện xuy ra được trong 3 xô: \(\left(1-a\right);\left(1-b\right);\left(1-c\right)\)co 2 xô cùng dâu. Giả xư đo là \(\left(1-a\right);\left(1-b\right)\)
\(\Rightarrow\left(1-a\right)\left(1-b\right)\ge0\)
Ta lại co:
\(4=a^2+b^2+c^2+abc\ge c^2+2ab+abc\)
\(\Leftrightarrow ab\left(2+c\right)\le4-c^2\)
\(\Leftrightarrow ab\le2-c\)
Quay lại bài toan ta co:
\(ab+bc+ca-abc\le2+\text{}\left(bc+ca-abc-c\right)=2-c\left(1-a\right)\left(1-b\right)\le2\)