Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
\(\lim\limits_{x\rightarrow\infty}\frac{3x-2}{x+1}=3\Rightarrow y=3\) là tiệm cận ngang
2.
\(\lim\limits_{x\rightarrow2}\frac{-2x}{x-2}=\infty\Rightarrow x=2\) là tiệm cận đứng
3.
\(\lim\limits_{x\rightarrow\infty}\frac{x-2}{x^2-1}=0\Rightarrow y=0\) là tiệm cận ngang
4.
\(\lim\limits_{x\rightarrow\infty}\frac{x-1}{x^2-x}=0\Rightarrow y=0\) là tiệm cận ngang
\(\lim\limits_{x\rightarrow0}\frac{x-1}{x^2-x}=\infty\Rightarrow x=0\) là tiệm cận đứng
\(\lim\limits_{x\rightarrow1}\frac{x-1}{x^2-x}=1\) hữu hạn nên \(x=1\) ko phải tiệm cận đứng
ĐTHS có 2 tiệm cận
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án C
Vì phương trình có ba nghiệm phân biệt nên đồ thị hàm số
có ba đường tiệm cận đứng.
Mặt khác, ta có:
nên đường thẳng
là đường tiệm cận ngang của đồ thị hàm số
.
Và nên đường thẳng y=0 là đường tiệm cận ngang của đồ thị hàm số
.
Vậy .
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn A
Đk để hàm số xác định là: . Vậy mệnh đề
đúng.
Do hàm số có tập xác định nên không tồn tại
do đó đồ thị hàm số này không có đường tiệm cận ngang. Vậy mệnh đề
sai.
Do nên đồ thị hàm số có
đường tiệm cận đứng là
và
. Vậy
đúng.
Ta có
Do bị đổi dấu qua
nên hàm số có một cực trị. Vậy mệnh đề
đúng.
Do đó số mệnh đề đúng là .
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án: A.
Nhận xét rằng hàm số dạng (a, b ≠ 0) có tiệm cận đứng là
và tiệm cận ngang là y = 0.
![](https://rs.olm.vn/images/avt/0.png?1311)
Phương pháp:
Quan sát đồ thị hàm số đã cho và dựa vào những kiến thức đã học về đồ thị hàm số để kết luận.
Cách giải:
Dựa vào BBT ta thấy đồ thị hàm số có tiệm cận đứng x=22 và tiệm cận ngang y=2
Chọn B.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án: A.
Nhận xét rằng hàm số dạng (a, b
≠
0) có tiệm cận đứng là
và tiệm cận ngang là y = 0.
Chọn C
Dựa vào định nghĩa mệnh đề 1 sai và mệnh đề 2, 3, 4 đúng.