Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Từ 4 chữ số 0, 1, 2, 3:
- Hàng trăm có 3 cách chọn.
- Hàng chục có 3 cách chọn.
- Hàng đơn vị có 2 cách chọn.
Vậy có tất cả 3.3.2 = 18 số tự nhiên khác nhau có 3 chữ số được lập từ 0, 1, 2, 3.
b) - Trường hợp 1: hàng đơn vị là số 0 như vậy hàng trăm có 3 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 3 = 6 số có thể lập được.
- Trường hợp 2: hàng đơn vị là số 2 như vậy hàng trăm có 2 cách chọn, hàng chục có 2 cách chọn.
Có tất cả 1. 2. 2 = 4 số có thể lập được.
Vậy có thể lập 6 + 4 = 10 số tự nhiên chẵn có ba chữ số khác nhau.

Gọi \(X=\left\{1,2,3,4,5,6,7\right\}\)
Số các số có 4 chữ số khác nhau được lập từ các chữ số thuộc X là \(A^4_7=840\)
Ta tính số các số mà có 2 chữ số lẻ cạnh nhau.
TH1: Số đó chỉ có 2 chữ số lẻ: Có \(3.A^2_4.A^2_3=216\) (số)
TH2: Số đó có 3 chữ số lẻ: Có \(4.A^3_4.3=288\) (số)
TH3: Cả 4 chữ số đều lẻ: Có \(4!=24\) (số)
Vậy có \(216+288+24=528\) số có 2 chữ số lẻ cạnh nhau. Suy ra có \(840-528=312\) số không có 2 chữ số liên tiếp nào cùng lẻ.

Gọi \(\overline{abc}\) là số tự nhiên có 3 chữ số khác nhau.
Chọn a có 5 cách \(\left(a\ne0\right)\)
Chọn b có 5 cách \(\left(b\ne a\right)\)
Chọn c có 4 cách \(\left(c\ne a,c\ne b\right)\)
Theo quy tắc nhân, có \(5.5.4=100\) cách chọn số tự nhiên có 3 chữ số khác nhau.
\(\Rightarrow n\left(\Omega\right)=100\)
Gọi \(A:``\) Lấy 2 số ngẫu nhiên có tích là số chẵn \(''\)
Để lấy 2 số ngẫu nhiên có tích là số chẵn thì ít nhất 1 trong 2 số phải là số chẵn.
\(TH_1:\) Cả 2 số lấy ra đều là số chẵn có \(C^2_3=6\) cách.
\(TH_2:\) 2 số lấy ra có 1 số là chẵn và 1 số là lẻ có \(C^1_3.C^1_3=9\) cách.
Theo quy tắc cộng, có \(6.9=54\) cách lấy 2 số ngẫu nhiên có tích là số chẵn.
\(\Rightarrow n\left(A\right)=54\)
\(P\left(A\right)=\dfrac{n\left(A\right)}{n\left(\Omega\right)}=\dfrac{54}{100}=\dfrac{27}{50}\)

Gọi số cần tìm là: abc
Các số có 2 chữ số được tạo thành là; ab; ba; ac; ca; bc; cb
Ta có: abc = ab + ba + ac + ca + bc + cb
a x 100 + b x 10 + c = 22 x a + 22 x b + 22 x c
78 x a = 12 x b + 21 x c
26 x a = 4 x b + 7 x c
4 x b + 7 x c lớn nhất là 4 x 9 + 7 x 9 = 99 nên a chỉ có thể bằng 1;2;
cần tìm số lớn nhất nên thử a = 3 => 4 x b + 7 x c = 52 là số chẵn
nên c phải chẵn => c = 4 và b = 6 thoả mãn
Đáp số: 264

Không gian mẫu: \(A_6^3=120\)
Gọi số cần lập có dạng \(\overline{abc}\)
Số chia hết cho 5 \(\Rightarrow c=5\) (1 cách chọn)
Chọn và hoán vị cặp ab: \(A_5^2=20\) cách
\(\Rightarrow1.20=20\) số chia hết cho 5
Xác suất: \(P=\dfrac{20}{120}=\dfrac{1}{6}\)

TH1: Hàng đơn vị là 0
=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 8 x 7 x 6 x 5 = 1680 (cách)
TH2: Hàng đơn vị là 5
=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 7 x 7 x 6 x 5 = 1470 (cách)
Số lượng số tự nhiên có 5 chữ số được lập bởi các số 0,1,2,3,4,5,6,7,8 và chia hết cho 5 là: 1680 + 1470 = 3150 (số)
Đáp số: 3150 số thoả mãn

Cho \(X=\left\{0;1;2;4;5;6;8;9\right\}\)
Gọi số cần tìm là \(\overline{abcd}\)
Chọn \(d=1,d=5\) hay \(d=9\)\(\Rightarrow\) có 1 cách
Chọn \(a\) có \(6\) cách \(\left(a\ne0,a\ne d\right)\)
Chọn \(b\) có \(5\) cách \(\left(b\ne a,b\ne d\right)\)
Chọn \(c\) có \(4\) cách \(\left(c\ne a,c\ne b,c\ne d\right)\)
Theo Quy tắc nhân, ta có : \(1.6.5.4=120\) cách chọn 4 chữ số khác nhau và là số lẻ.

Gọi STN có 3 chữ số là \(\overline {abc} \)
- a có 4 cách ( khác 0).
- b có 4 cách (khác a).
- c có 3 cách (khác a, b).
Vậy có thể lập được 4. 4. 3= 48 số tự nhiên có ba chữ số khác nhau.
a: Gọi số lập được có dạng là \(\overline{ab}\)
b có 5 cách
a có 4 cách
Do đó: Có \(4\cdot5=20\left(cách\right)\)
=>Sai
b: Gọi số lập được có dạng là \(\overline{abc}\)
a có 5 cách chọn
b có 5 cách chọn
c có 5 cách chọn
Do đó: có \(5\cdot5\cdot5=125\left(cách\right)\)
=>Nhận
c: Gọi số lập được có dạng là \(\overline{ab}\)
b có 3 cách chọn
a có 4 cách chọn
Do đó: Có \(3\cdot4=12\left(cách\right)\)
=>Sai
d: Gọi số lập được có dạng là \(\overline{abcde}\)
e có 3 cách chọn
a có 4 cách chọn
b có 3 cách chọn
c có 2 cách chọn
d có 1 cách chọn
Do đó: Có \(3\cdot4\cdot3\cdot2=9\cdot8=72\left(cách\right)\)
=>Sai