![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cứ quy đồng là ra à. Làm biếng trình bày quá. Nên cho bạn đáp số thôi nhé
a/ \(\frac{\left(\sqrt{3x}-1\right)^2}{\sqrt{3x}-2}\)
b/ x = 3 và A = 4
![](https://rs.olm.vn/images/avt/0.png?1311)
1) +) ta có : \(C-\dfrac{1}{3}\Leftrightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{1}{3}=\dfrac{3\sqrt{x}-x+\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{-\left(x-4\sqrt{x}+4\right)+3}{3\left(x+\sqrt{x}+1\right)}=\dfrac{-\left(\sqrt{x}-2\right)^2+3}{3\left(x+\sqrt{x}+1\right)}\)
không thể cm được đâu bn --> xem lại đề
2) +) ta có : \(D=\dfrac{\sqrt{x}-1}{\sqrt{x}+2}=1-\dfrac{3}{\sqrt{x}+2}\)
--> để \(D\in Z\Leftrightarrow\sqrt{x}+2\) là ước của 3 \(\Leftrightarrow\sqrt{x}+2\in\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow x=1\) vậy \(x=1\)
3) +) tương tự 2)
4) a) +) điều kiện xác định : \(x>0;x\ne4\)
ta có : \(A=\left(\dfrac{2}{\sqrt{x}+3}-\dfrac{1}{\sqrt{x}}\right):\dfrac{\sqrt{x}-2}{x+3\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}-\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}}{\sqrt{x}-2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}\)
b) ta có : \(A=3\Leftrightarrow\dfrac{\sqrt{x}-3}{\sqrt{x}-2}=3\Leftrightarrow\sqrt{x}-3=3\sqrt{x}-6\)
\(\Leftrightarrow2\sqrt{x}=3\Leftrightarrow\sqrt{x}=\dfrac{3}{2}\Leftrightarrow x=\dfrac{9}{4}\) vậy \(x=\dfrac{9}{4}\)
c) ta có : \(B=A.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{\sqrt{x}-3}{\sqrt{x}-2}.\dfrac{\sqrt{x}+3}{\sqrt{x}+2}=\dfrac{x-9}{x-4}=1-\dfrac{5}{x-4}\)
tương tự 2 )
\(\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu a :
Ta có : \(\sqrt{5+3x}-\sqrt{5-3x}=a\)
\(\Leftrightarrow\left(\sqrt{5+3x}-\sqrt{5-3x}\right)^2=a^2\)
\(\Leftrightarrow5+3x-2\sqrt{\left(5+3x\right)\left(5-3x\right)}+5-3x=a^2\)
\(\Leftrightarrow10-2\sqrt{25-9x^2}=a^2\)
\(\Leftrightarrow2\sqrt{25-9x^2}=10-a^2\)
\(\Leftrightarrow\sqrt{25-9x^2}=\dfrac{10-a^2}{2}\)
\(\Leftrightarrow25-9x^2=\dfrac{\left(a^2-10\right)^2}{2}\)
\(\Leftrightarrow9x^2=25-\dfrac{\left(a^2-10\right)^2}{2}\)
\(\Leftrightarrow3x=\sqrt{\dfrac{50-\left(a^2-10\right)^2}{2}}\)
\(\Leftrightarrow x=\dfrac{\sqrt{50-\left(a^2-10\right)^2}}{3\sqrt{2}}\)
\(P=\dfrac{3\sqrt{2}.\sqrt{10+2\sqrt{\dfrac{10-a^2}{2}}}}{\sqrt{50-\left(a^2-10\right)^2}}\)
Bạn tự rút gọn nữa nhé :))
Câu b : \(M=\dfrac{2x+y+z-15}{x}+\dfrac{x+2y+z-15}{y}+\dfrac{x+y+2z-24}{z}\)
\(=\dfrac{x-3}{x}+\dfrac{y-3}{y}+\dfrac{z-12}{z}\)
\(=3-3\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{4}{z}\right)\le3-3\left[\dfrac{\left(1+1+2\right)^2}{12}\right]=-1\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1, Để Q\(\in\)Z thì \(\dfrac{-1}{\sqrt{x}-3}\in Z\) khi đó \(\left[{}\begin{matrix}\sqrt{x}-3=1\\\sqrt{x}-3=-1\end{matrix}\right.\)<=>\(\left[{}\begin{matrix}\sqrt{x}=4\\\sqrt{x}=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=16\\x=4\end{matrix}\right.\)\(\in Z\)(thỏa mãn)
vậy x\(\in\left\{16,4\right\}\)thì Q\(\in\)Z
2, Để Q\(\in\)Z thì \(\dfrac{\sqrt{x}-2}{3\sqrt{x}-4}\in Z\) khi đó \(\sqrt{x}-2⋮3\sqrt{x}-4\)
<=> 3\(\sqrt{x}\)- 6\(⋮\) 3\(\sqrt{x}\)-4 <=> 3\(\sqrt{x}\)- 4-2 \(⋮\) 3\(\sqrt{x}\)- 4 <=> -2 \(⋮\) 3\(\sqrt{x}\)- 4
=> 3\(\sqrt{x}\)- 4 \(\in\)Ư(-2) Mà Ư(-2) =\(\left\{\pm1,\pm2\right\}\)
+ Với 3\(\sqrt{x}\)- 4 = 1 => 3\(\sqrt{x}\) =5 => \(\sqrt{x}\)= 5/3 =>x =25/9 \(\notin\)Z (loại)
+ Với 3\(\sqrt{x}\)- 4 =-1 => 3\(\sqrt{x}\) =3 => x=1 (thỏa mãn x thuộc Z )
+ Với 3\(\sqrt{x}\)- 4 =2 => 3\(\sqrt{x}\) =6 => \(\sqrt{x}\)=2=>x=4 (thỏa mãn x thuộc Z )
+ Với 3\(\sqrt{x}\)- 4 =-2 => 3\(\sqrt{x}\) =2=> \(\sqrt{x}\)=2/3=>x=4/9(loại vì x ko thuộc Z )
Vậy x \(\in\left\{1,4\right\}\)thì Q đạt giá trị nguyên .
câu b, bạn có thể khi tìm ra x rồi thay lại vào Q để thử coi Q có thuộc Z ko vì biểu thức khi xét có nhân thêm 3 nên dẫn đến có chênh lệch số .
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ:\(x>0,x\ne4\)
\(M=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2}{\sqrt{x}}\right)\)
\(M=\left(\dfrac{8\sqrt{x}+4x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(M=\dfrac{4\sqrt{x}}{\left(2-\sqrt{x}\right)}\cdot\dfrac{\sqrt{x}\left(2-\sqrt{x}\right)}{\sqrt{x}-3}\)
\(M=\dfrac{4x}{\sqrt{x}-3}\)