\(\dfrac{1}{\sqrt{x}+1}+\dfrac{x}{\sqrt{x}-x}\) (Với x>0, x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 6 2018

a/ \(P=\dfrac{1}{\sqrt{x}+1}+\dfrac{x}{\sqrt{x}-x}=\dfrac{\sqrt{x}-x+x\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-x\right)}\)

\(=\dfrac{\sqrt{x}-x+x\sqrt{x}+x}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-x\right)}\)\(=\dfrac{\sqrt{x}+x\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-x\right)}\)

\(=\dfrac{\sqrt{x}\left(x+1\right)}{\left(\sqrt{x}+1\right)\sqrt{x}\left(1-\sqrt{x}\right)}\)\(=\dfrac{x+1}{1-x}\)

b/ thay x = \(\dfrac{1}{\sqrt{2}}\) vào P:

\(P=\dfrac{\dfrac{1}{\sqrt{2}}+1}{1-\dfrac{1}{\sqrt{2}}}=3+2\sqrt{2}\)