Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Yêu cầu chứng minh \(B\ge1\) là đáp án đúng cho bài toán này.
Không giải!
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(B=\frac{x^4}{x+xy}+\frac{y^4}{y+xy}\ge\frac{\left(x^2+y^2\right)^2}{x+y+2xy}\ge\frac{\left(x+y\right)^4}{4\left(x+y+2\right)}=\frac{a^4}{4\left(a+2\right)}\)
Ta có \(x+y\ge2\sqrt{xy}=2\Rightarrow a\ge2\)
Ta cần \(\frac{a^4}{4\left(a+2\right)}\ge1\Leftrightarrow a^4\ge4a+8\Leftrightarrow\frac{1}{2}a^4+\frac{1}{2}a^4\ge4a+8\)
Ta có\(\frac{1}{2}a^4\ge\frac{1}{2}.16=8;a^3\ge8\Rightarrow\frac{1}{2}a^4\ge4a\Rightarrow a^4\ge4a+8\)
=> B>=1
dấu = xảy ra <=> x=y=1
![](https://rs.olm.vn/images/avt/0.png?1311)
Tìm x :
a) ( x - 15 ) . 35 = 0
x - 15 = 0 : 35
x - 15 = 0
x = 0 + 15
x = 15
b) 32 ( x - 10 ) = 32
x - 10 = 32 : 32
x - 10 = 1
x = 1 + 10
x = 11
\(\frac{1}{x^3+y^3}+\frac{1}{xy}=\frac{1}{x^2-xy+y^2}+\frac{1}{x}+\frac{1}{y}=1+\frac{3xy}{x^3+y^3}+1+\frac{x}{y}+1+\frac{y}{x}\ge5\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow\)\(x+y=x+y-2z+2\sqrt{\left(x-z\right)\left(y-z\right)}\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)
Theo giả thiết, ta có:
theo giả thiết, ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}-\frac{1}{x}=\frac{1}{y}\)\(\Rightarrow\frac{x-z}{zx}=\frac{1}{y}\Rightarrow x-z=\frac{zx}{y}\)
Tương tự, ta có: \(y-z=\frac{zy}{x}\)
Do đó: \(2\sqrt{\left(x-z\right)\left(y-z\right)}=2\sqrt{\frac{zx}{y}.\frac{zy}{x}}=2z\) (1)
ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)(2)
Thay (2) vào (1) ta thấy (2) luôn đúng
Suy ra ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{z}\right)+\frac{1}{2}\left(\frac{y}{z}+\frac{z}{x}\right)+\frac{1}{2}\left(\frac{z}{x}+\frac{x}{y}\right)\)
\(\ge\sqrt{\frac{x}{y}.\frac{y}{z}}+\sqrt{\frac{y}{z}.\frac{z}{x}}+\sqrt{\frac{z}{x}.\frac{x}{y}}=VP\) (rút gọn lại thôi:v)
![](https://rs.olm.vn/images/avt/0.png?1311)
Sao không ai trả lời vậy, mình trả lời vui thôi không chắc đúng nha
\(B=\frac{x^4}{x+xy}+\frac{y^4}{y+xy}\ge\frac{\left(x^2+y^2\right)^2}{x+y+2xy}\ge\frac{4x^2y^2}{x+y+2}=\frac{4}{x+y+2}\)
Vì x,y nguyên dương và xy=1 nên\(x,y\le1\Rightarrow B\ge\frac{4}{2+2}=1\)
Bạn xem lại đề nhé , nếu x = y = 1 thì B = 1 < 4
thầy mik ra đề như v mik cũng ko pik lm s nữa