Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a.Xét 2 tam giác vuông ABO và ACO có
BO=CO (đều là BK đường tròn)
AB=AC (Độ dài hai tiếp tuyến của một đường tròn cùng xuất phát từ một điểm bên ngoài đường tròn thì bằng nhau)
góc ABO=góc ACO=90 độ
Suy ra tam giác ABO=tam giác ACo (c.g.c) suy ra góc BAO=góc CAO
Tam giác ABC cân tại A nên AO vừa là phân giác của góc BAC vừa là đường cao của tam giác ABC hạ từ A xuống BC vậy AO vuông góc với BC
c,Ta có góc BCO=góc CAO (cùng phụ với góc AOC)
góc CAO=góc BAO
suy ra góc BCO=góc BAO (1)
Xét tam giác vuông BCH có góc CBH+góc BCO=90 độ (2)
Ta có góc ABC+góc BAO=90 độ (3)
Từ (1) (2) (3) suy ra góc CBH=góc ABC nên BC là phân giác của góc ABH
mình chỉ biết làm câu a và c thôi mong bạn thông cảm

ho nửa đường tròn (O;R) đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên tia đối của tia CB lấy điểm D sao cho CD=CB. Đường thẳng OD cắt AC tại M. Từ A, kẻ AH vuông góc với OD tại H ( H thuộc OD). Đường thẳng AH cắt DB tại N và cắt nửa đường tròn (O;R) tại E. Yêu cầu: a) Chứng minh rằng các tứ giác MCNH và ADCH nội tiếp. b) Chứng minh đẳng thức: HM⋅HD=HN⋅HA