Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất của dãy tỉ số bằng nhau,ta có :
\(\frac{a}{671b+c}=\frac{b}{671c+a}=\frac{c}{671a+b}=\frac{a+b+c}{\left(671b+c\right)+\left(671c+a\right)+\left(671a+b\right)}=\frac{a+b+c}{672.\left(a+b+c\right)}=\frac{1}{672}\)
\(\frac{a}{671b+c}=\frac{1}{672}\Rightarrow672a=671b+c\)
\(\frac{b}{671c+a}=\frac{1}{672}\Rightarrow672b=671c+a\)
\(\frac{c}{671a+b}=\frac{1}{672}\Rightarrow672c=671a+b\)
\(\Rightarrow A=\frac{671b+c}{a}+\frac{671c+a}{b}+\frac{671a+b}{c}\)
\(A=\frac{672a}{a}+\frac{672b}{b}=\frac{672c}{c}=671a+671b+671c=671\left(a+b+c\right)\)

\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
cộng 1 vào mỗi tỉ số,ta được :
\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
\(\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
xét a + b + c = 0 \(\Rightarrow\)a + b = -c ; b + c = -a ; a + c = -b
\(\Rightarrow P=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
xét a + b + c khác 0 \(\Rightarrow\)b + c = a + c = a + b \(\Rightarrow\)a = b = c
\(\Rightarrow P=2+2+2=6\)
Có : a/b+c = b/a+c = c/a+b => b+c/a = a+c/b = a+b/c
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
b+c/a = a+c/b = a+b/c = b+c+a+c+a+b/a+b+c = 2
=> P = 2+ 2 + 2 =6
k mk nha

Vì \(a,b,c>0\Rightarrow a+b+c\ne0\)
Áp dụng tc dtsbn:
\(\dfrac{2b+c-a}{a}=\dfrac{2c-b+a}{b}=\dfrac{2a+b-c}{c}=\dfrac{2\left(a+b+c\right)}{a+b+c}=2\\ \Rightarrow\left\{{}\begin{matrix}2b+c-a=2a\\2c-b+a=2b\\2a+b-c=2c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-2b=c\\3b-2c=a\\3c-2a=b\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3a-c=2b\\3b-a=2c\\3c-b=2a\end{matrix}\right.\\ \Rightarrow P=\dfrac{abc}{2a\cdot2b\cdot2c}=\dfrac{1}{8}\)

Dễ vcl giải
Có a²(b+c)-b²(a+c)=2013-2013=0
a²b+a²c-b²a-b²c=0
a²b-b²a+a²c-b²c=0
ab(a-b)+c(a²-b²)=ab(a-b)+c(a-b)(a+b)=0
(a-b)[ab+c(a+b)]=0
Suy ra 1 trong 2 số =0 mà a và b khác nhau nên ab+c(a+b)=0
Suy ra ab và c(a+b) là 2 số đối suy ra ab×c và c×c(a+b) là 2 số đối suy ra abc và c²(a+b) là 2 số đối
=>c²(a+b)-abc=0
<=>c²(a+b)=-abc
Lại có ab + c(a+b)=0 => ab + ac + cb =0
<=> a(b+c)+cb=0
<=> a²(b+c) + abc =0
=>abc =0-2013=-2013=> abc = -2013
Nên c²(a+b)=-(abc)=-(-2013)=2013 .
Vậy c²(a+b)=2023 ezzzz
Bài này dễ lớp 6 mà