K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2018

Trung điểm M của BC có tọa độ là:

x = 1 + 3 2 = 2 y = − 4 + ​ 6 2 = 1 ⇒ M ​ ( 2 ;     1 )

Đường thẳng AM qua A(5;2) có vectơ chỉ phương là M A → = 3 ; 1  nên có vectơ pháp tuyến n → = 1 ; − 3 .

 Phương trình AM là (x – 5) – 3(y – 2) = 0 x – 3y + 1 = 0.

ĐÁP ÁN A

1 tháng 4 2016

A B C D M G d2 d1

Gọi G là giao điểm của 2 đường thẳng \(d_1,d_2\). Khi đó G(1;1) và G là trọng tâm của tam giác ABC. Gọi D là điểm đối xứng với A qua G suy ra tứ giác BGCD là một hình bình hành và D(-4;-1)

Gọi b là đường thẳng đi qua D và song song với \(d_1\)

Khi đó b có phương trình \(5\left(x+4\right)+3\left(y+1\right)=0\)

hay \(5x+3y+23=0\)

đường thẳng b cắt \(d_2\) tại điểm C có tọa độ là nghiệm của hệ :

\(\begin{cases}5x+3y+23=0\\3x+8y-11=4\end{cases}\)

Giải hệ thu được (x;y)=(-7;4)

Do đó C(-7;4)

Tương tự c là đường thẳng đi qua D và song song với \(d_2\) cắt \(d_1\) tại B(4;-4)

Khi đó \(\overrightarrow{BC}=\left(-11;8\right)\)

Suy ra BC có vec tơ pháp tuyến \(\overrightarrow{n}=\left(8;11\right)\), do đó có phương trình \(8\left(x-4\right)+11\left(y+4\right)=0\)  hay \(8x+11y+12=0\)

1 tháng 5 2020

Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)

Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0

Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)

Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)

Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)

Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)

Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH

Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM

Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)

Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)

Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)

30 tháng 4 2020

Lần sau em đăng vào học 24 nhé!

Hướng dẫn: 

Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C 

A ( a; 3 - a); C ( c: -2c -1 ) 

Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)

=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM

=> tìm đc tọa độ B theo a và c

Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c

Lại có: AB vuông CH => Thêm 1 phương trình theo a và c 

=> Tìm đc a, c => 3 đỉnh

9 tháng 5 2017

a) Vẽ đường thẳng \(3+2y=0\). Vì điểm O(0;0) có tọa độ thõa mãn bất phương trình nên phần không tô màu là miền nghiệm của bất phương trình:
TenAnh1 TenAnh1 A = (-4.34, -5.96) A = (-4.34, -5.96) A = (-4.34, -5.96) B = (11.02, -5.96) B = (11.02, -5.96) B = (11.02, -5.96) D = (10.28, -5.54) D = (10.28, -5.54) D = (10.28, -5.54) F = (9.98, -5.84) F = (9.98, -5.84) F = (9.98, -5.84)

9 tháng 5 2017

b) Tương tự:
TenAnh1 TenAnh1 A = (-4.34, -5.96) A = (-4.34, -5.96) A = (-4.34, -5.96) B = (11.02, -5.96) B = (11.02, -5.96) B = (11.02, -5.96) D = (10.28, -5.54) D = (10.28, -5.54) D = (10.28, -5.54) F = (9.98, -5.84) F = (9.98, -5.84) F = (9.98, -5.84) H = (10.64, -5.76) H = (10.64, -5.76) H = (10.64, -5.76)

18 tháng 4 2016

B A K C H(-1;1) 4x+3y-13=0 x-y+1=0

Gọi K là điểm đối xứng với H qua đường phân giác trong góc A. Khi đó K thuộc đường thẳng AC. Đường thẳng HK có phương trình \(x+y+2=0\)

Gọi I là giao điểm của HK và đường phân giác trong góc A thì I có tọa độ là nghiệm của hệ :

\(\begin{cases}x-y+2=0\\x+y+2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=-2\\y=0\end{cases}\)\(\Rightarrow I\left(-2;0\right)\)

I là trung điểm HK nên suy ta \(K\left(-3;1\right)\)

Khi đó AC :\(3\left(x+3\right)-4\left(y-1\right)=0\Leftrightarrow3x-4y+1=0\)

A có tọa độ thỏa mãn : \(\begin{cases}x-y+2=0\\3x-4y+13=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=7\end{cases}\)\(\Leftrightarrow A\left(5;7\right)\)

AB có phương trình : \(\frac{x+1}{6}=\frac{y+1}{8}\Leftrightarrow4x-3y+1=0\)

B có tọa độ thỏa mãn : \(\begin{cases}4x+3y-1=0\\4x-3y+1=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=0\\y=\frac{1}{3}\end{cases}\)\(\Rightarrow B\left(0;\frac{1}{3}\right)\)

HC có phương trình : \(3\left(x+1\right)+4\left(y+1\right)=0\Leftrightarrow30+4y+7=0\)

C có tọa độ thỏa mãn hệ phương trình :

 \(\begin{cases}3x+4y+7=0\\3x-4y+13=0\end{cases}\)\(\begin{cases}x=-\frac{10}{3}\\y=\frac{3}{4}\end{cases}\)\(\Rightarrow C\left(-\frac{10}{3};\frac{3}{4}\right)\)

7 tháng 4 2019

cho mk hs: tai sao K thuoc duong thang AC thi HK co phuong trinh nhu vay ak

21 tháng 7 2017

hai đường trung tuyến đã cho đều không phải là đường trung tuyến xuất phát từ A vì tọa độ của A không thỏa mãn các phương trình của chúng .

đặc BM : \(2x-y+1=0\) và CN : \(x+y-4=0\) là 2 trung tuyến của tam giác ABC

đặc B\(\left(x;y\right)\) , ta có N \(\left(\dfrac{x-2}{2};\dfrac{y+3}{2}\right)\)\(\left\{{}\begin{matrix}B\in BM\\N\in CN\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\\dfrac{x-2}{2}+\dfrac{y+3}{2}-4=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y=-1\\x+y=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=5\end{matrix}\right.\)

vậy phương trình đường thẳng chứa cạnh AB là : \(2x-4y+16=0\) \(\Leftrightarrow x-2y+8=0\)

tương tự ta có phương trình đường thẳng chứa cạnh AC là : \(2x+5y-11=0\) phương trình đường thẳng chứa cạnh BC là : \(4x+y-13=0\)

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

Phương pháp tọa độ trong mặt phẳng

4 tháng 8 2016

Gọi N' là điểm đối xứng của N wa đg thẳng AD(D là chân đg phân giác),gọi giao điểm N'N và AD là I

\(\Rightarrow\)N'N:3x-y+5

Tọa độ điểm I là nghiệm của hệ \(\begin{cases}x-3y-5=0\\3x+y+5=0\end{cases}\)

\(\Rightarrow\begin{cases}x=-1\\y=-2\end{cases}\)\(\Rightarrow\)N'(-2,1)

Tương tự:M'(\(\frac{-48}{5},\frac{-21}{5}\)

Ta có:MN':x+3y-1=0

M'N:y=-5

tọa độ điểm A là nghiệm của hệ \(\begin{cases}x+3y-1=0\\y=-5\end{cases}\)   

\(\Rightarrow\)A(16,-5)

Do G là trọng tâm nên \(\overrightarrow{AG}=2\overrightarrow{GE}\) (E(x,y) là trung điểm của BC)

\(\Rightarrow\begin{cases}\frac{-50}{3}=2x+\frac{4}{3}\\\frac{10}{3}=2y+3\end{cases}\)\(\Rightarrow\begin{cases}x=-9\\y=0\end{cases}\)

B thuộc MN'\(\Rightarrow\) B\(\left(1-3b,b\right)\)

E là trung điểm BC \(\Rightarrow\) C(3b-19,-b)

Do C thuộc M'N\(\Rightarrow\) b=5

Suy ra B,C

trong wá trình làm có sai sót gì thì thông cảm

4 tháng 3 2019

câu 1.Ta có:

\(\frac{x^2}{x+3y}+\frac{x+3y}{16}\ge2\sqrt{\frac{x^2}{x+3y}.\frac{x+3y}{16}}=\frac{x}{2}\)

\(\frac{y^2}{y+3x}+\frac{y+3x}{16}\ge2\sqrt{\frac{y^2}{y+3x}.\frac{y+3x}{16}}=\frac{y}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{x+y+3x+3y}{16}\ge\frac{x+y}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}+\frac{1}{4}\ge\frac{1}{2}\)

\(\frac{x^2}{x+3y}+\frac{y^2}{y+3x}\ge\frac{1}{2}-\frac{1}{4}=\frac{1}{4}\left(đpcm\right)\)

Câu 2:

điều kiện \(a^2+b^2+c^2+d^2=4\)(đúng ko)

Ta có:

\(\frac{1}{a^2+1}+\frac{a^2+1}{4}\ge2\sqrt{\frac{1}{a^2+1}.\frac{a^2+1}{4}}=1\)

\(\frac{1}{b^2+1}.\frac{b^2+1}{4}\ge2\sqrt{\frac{1}{b^2+1}.\frac{b^2+1}{4}}=1\)

\(\frac{1}{c^2+1}+\frac{c^2+1}{4}\ge2\sqrt{\frac{1}{c^2+1}.\frac{c^2+1}{4}}=1\)

\(\frac{1}{d^2+1}+\frac{d^2+1}{4}\ge2\sqrt{\frac{1}{d^2+1}.\frac{d^2+1}{4}}=1\)

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}+\frac{a^2+b^2+c^2+d^2+4}{4}\ge4\)

\(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}+\frac{1}{d^2+1}\ge4-\frac{8}{4}=2\left(đpcm\right)\)

4 tháng 3 2019

Bạn ơi 2 dòng cuối ở câu 2 mình chưa hiểu lắm, làm sao để mất \(a^2+b^2+c^2+d^2\)được vậy?