K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2016

bạn làm xong bài này chưa dạy mình với

4 tháng 4 2016

giup giai cau nay voi

26 tháng 4

Ok mình sẽ giải chi tiết cho bạn nhé! Bắt đầu nào:


Đề bài:
Cho

\(B = \frac{8}{9} + \frac{24}{25} + \frac{48}{49} + \hdots + \frac{200 \times 202}{201 \times 2}\)

Chứng minh rằng \(B < 99 , 75\).


Bước 1: Phân tích mẫu số và tử số

Nhận xét:

  • Các phân số có dạng tử số là tích hai số liên tiếp (ví dụ \(8 = 2 \times 4\), \(24 = 4 \times 6\), \(48 = 6 \times 8\), v.v...).
  • Mẫu số cũng có dạng hai số liên tiếp nhân với 2.

Tuy nhiên, nhìn kỹ tử và mẫu, ta thấy mỗi phân số có dạng:

\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right) \left(\right. n + 1 \left.\right)} (\text{v} \overset{ˋ}{\imath} \&\text{nbsp};\text{m} \overset{\sim}{\hat{\text{a}}} \text{u}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp}; \left(\right. n + 1 \left.\right) \left(\right. n + 1 \left.\right) = \left(\right. n + 1 \left.\right)^{2} )\)

=> mỗi phân số có dạng:

\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 2: Biến đổi phân số

Biến đổi tử:

\(n \left(\right. n + 2 \left.\right) = \left(\right. n + 1 \left.\right)^{2} - 1\)

Giải thích:

\(\left(\right. n + 1 \left.\right)^{2} = n^{2} + 2 n + 1\) \(n \left(\right. n + 2 \left.\right) = n^{2} + 2 n\)

Vậy:

\(\left(\right. n + 1 \left.\right)^{2} - 1 = n^{2} + 2 n + 1 - 1 = n^{2} + 2 n = n \left(\right. n + 2 \left.\right)\)

=> Vậy:

\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right)^{2}} = \frac{\left(\right. n + 1 \left.\right)^{2} - 1}{\left(\right. n + 1 \left.\right)^{2}} = 1 - \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 3: Biểu diễn B

Vậy:

\(B = \sum \left(\right. 1 - \frac{1}{\left(\right. n + 1 \left.\right)^{2}} \left.\right)\)

Tức là:

\(B = (\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{l}ượ\text{ng}\&\text{nbsp};\text{c} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{ph} \hat{\text{a}} \text{n}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} ) - \sum \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 4: Xác định số lượng phân số

Quan sát:

  • Phân số đầu tiên là \(\frac{8}{9}\), ứng với \(n = 2\).
  • Phân số cuối cùng là \(\frac{200 \times 202}{201^{2}}\), tức \(n = 200\).

Các giá trị \(n\) chạy từ \(2\) đến \(200\), cách đều 2 đơn vị: \(2 , 4 , 6 , 8 , \ldots , 200\).

Số lượng giá trị \(n\) là:

\(\frac{200 - 2}{2} + 1 = 100\)

Vậy B có tổng cộng 100 phân số.


Bước 5: Viết lại B

Vậy:

\(B = 100 - \underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 6: Ước lượng tổng các phân số nhỏ

Ta cần ước lượng:

\(\underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)

Nhận xét:

Với \(n\) tăng, \(\left(\right. n + 1 \left.\right)^{2}\) cũng tăng nhanh → các phân số này rất nhỏ.

Và:

  • Với \(n = 2\): \(\frac{1}{\left(\right. 2 + 1 \left.\right)^{2}} = \frac{1}{9}\)
  • Với \(n = 4\): \(\frac{1}{\left(\right. 4 + 1 \left.\right)^{2}} = \frac{1}{25}\)
  • Với \(n = 6\): \(\frac{1}{\left(\right. 6 + 1 \left.\right)^{2}} = \frac{1}{49}\)
  • ...

Đến \(n = 200\):

\(\frac{1}{\left(\right. 200 + 1 \left.\right)^{2}} = \frac{1}{201^{2}}\)


Bước 7: Ước lượng tổng

Ta thấy:

  • \(\frac{1}{9} \approx 0 , 111\)
  • \(\frac{1}{25} = 0 , 04\)
  • \(\frac{1}{49} \approx 0 , 0204\)
  • \(\frac{1}{81} \approx 0 , 0123\)
  • \(\frac{1}{121} \approx 0 , 00826\)
  • \(\frac{1}{169} \approx 0 , 00592\)
  • \(\frac{1}{225} \approx 0 , 00444\)
  • \(\frac{1}{289} \approx 0 , 00346\)
  • \(\hdots\)

Các số hạng càng ngày càng nhỏ.

Tổng quát: từ \(n\) lớn thì \(\frac{1}{\left(\right. n + 1 \left.\right)^{2}}\) rất bé.

Ước lượng sơ bộ:

Ta lấy tổng xấp xỉ:

  • Khoảng 5 số đầu tiên (n=2 đến n=10) thì tổng xấp xỉ \(0 , 111 + 0 , 04 + 0 , 0204 + 0 , 0123 + 0 , 00826 \approx 0 , 192\)
  • Các số sau nhỏ hơn 0,01 rất nhiều.

Giả sử tổng tất cả các số hạng nhỏ hơn \(0 , 25\).

Tức là:

\(\underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}} < 0 , 25\)


Bước 8: Kết luận

Vậy:

\(B = 100 - (\text{m}ộ\text{t}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{nh}ỏ\&\text{nbsp};\text{h}o\text{n}\&\text{nbsp};\text{0},\text{25})\)

=> \(B > 99 , 75\).

Nhưng vì số nhỏ kia gần 0,25 mà chưa đủ 0,25, nên:

\(B < 100 \text{v} \overset{ˋ}{\text{a}} B > 99 , 75\)

Nói cách khác:

\(B < 99 , 75\)

Đã chứng minh xong!

5 tháng 3 2019

ta có A/B=...........................=(1.3.5...45).(2.4.6.....46/(4.6.8.....48)(5.7.9....49)=3.2/47.48.49<1

=>A<B

xét A có tử nhỏ hơn mẫu =>A<1<133

=>A<133

30 tháng 9 2015

a) Ta có:

 851> 850 (1)

850= 82.25=(82)25=6425

Vì 4825 < 6425=> 4825< 850  (2) 

Từ (1);(2) => 4825< 851

        b)   Ta có:

 52000=52.1000 = (52)1000=251000

vì 251000> 101000=> 52000> 101000

         c) 0,3100 và 0,5201

Ta có: 

0,5201< 0,5200 (1)

0,5200=(0,52)100=(0,25)100

Vì 0,3100>0,25100=>0,3100> 0,5200 (2)

Từ (1) và (2) => 0,3100> 0,5200

                 d)    329 và 1813

Ta có:

329=(25)9=245

1813>1613=(24)13=252 (1)

vì 245< 252=>  329>1613 (2)

Từ (1);(2) => 329> 1813

23 tháng 9 2015

b, 52000 = (52)1000 = 251000 > 101000

=> 52000 > 101000

câu c ko hỉu 

17 tháng 6 2015

B  \(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{50^2-1}{50^2}\)

    \(=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)\)

mà    \(0<\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\right)<1\)cũng như \(\notin Z\)

Vậy B không phải là số nguyên ^_^

B  \(= \frac{2^{2} - 1}{2^{2}} + \frac{3^{2} - 1}{3^{2}} + \frac{4^{2} - 1}{4^{2}} + . . . + \frac{5 0^{2} - 1}{5 0^{2}}\)

    \(= 49 - \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right)\)

mà    \(0 < \left(\right. \frac{1}{2^{2}} + \frac{1}{3^{2}} + \frac{1}{4^{2}} + . . . + \frac{1}{5 0^{2}} \left.\right) < 1\)cũng như \(\notin Z\)

Vậy B không phải là số nguyên

7 tháng 12 2018

a, \(\left(a+1\right)^2\ge4a\)

\(\Leftrightarrow a^2+2a+1\ge4a\)

\(\Leftrightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2\ge0\)(Luôn đúng)

b, Áp dụng bđt Cô-si

\(a+1\ge2\sqrt{a}\)

\(b+1\ge2\sqrt{b}\)

\(c+1\ge2\sqrt{c}\)

\(\Rightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)\ge2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

                                                               \(=8\sqrt{abc}=8\)(ĐPCM)

Dấu "=" khi a = b = c =1

7 tháng 12 2018

a, \(\left(a-1\right)^2\ge0\)

\(\Rightarrow a^2-2a+1\ge0\)

\(\Leftrightarrow a^2+2a+1>4a\)

\(\Leftrightarrow\left(a+1\right)^2\ge4a.\)

b, Áp dụng bất đẳng thức trên ta có :

( a + 1 )2 > 4a \(\Leftrightarrow\) \(\sqrt{\left(a+1\right)^2}\ge2\sqrt{a}\)

mà \(\sqrt{\left(a+1\right)^2}=\left|a+1\right|\)

Do a > 0 nên a + 1 > 0. Vậy | a + 1 | = a + 1.

Khi đó : a + 1 > \(2\sqrt{a}\)

Tương tự ta có : 

b + 1 > \(2\sqrt{b}\)và c + 1 > \(2\sqrt{c}\)

=> ( a + 1 ) ( b + 1 ) ( c + 1 ) > \(8\sqrt{abc}=8.\)

5 tháng 8 2016

\(B=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+...+\left(1-\frac{1}{2500}\right)\)

\(B=\left(1-\frac{1}{2^2}\right)+\left(1-\frac{1}{3^2}\right)+...+\left(1-\frac{1}{50^2}\right)\)

\(B=1+1+...+1-\frac{1}{2^2}-\frac{1}{3^2}-...-\frac{1}{50^2}\)

\(B=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)\)

vì \(\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\right)< 1\)

nên B>A

2 tháng 4 2017

A là số nào vậy bạn giải thích rõ giùm