K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4

Ok mình sẽ giải chi tiết cho bạn nhé! Bắt đầu nào:


Đề bài:
Cho

\(B = \frac{8}{9} + \frac{24}{25} + \frac{48}{49} + \hdots + \frac{200 \times 202}{201 \times 2}\)

Chứng minh rằng \(B < 99 , 75\).


Bước 1: Phân tích mẫu số và tử số

Nhận xét:

  • Các phân số có dạng tử số là tích hai số liên tiếp (ví dụ \(8 = 2 \times 4\), \(24 = 4 \times 6\), \(48 = 6 \times 8\), v.v...).
  • Mẫu số cũng có dạng hai số liên tiếp nhân với 2.

Tuy nhiên, nhìn kỹ tử và mẫu, ta thấy mỗi phân số có dạng:

\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right) \left(\right. n + 1 \left.\right)} (\text{v} \overset{ˋ}{\imath} \&\text{nbsp};\text{m} \overset{\sim}{\hat{\text{a}}} \text{u}\&\text{nbsp};\text{l} \overset{ˋ}{\text{a}} \&\text{nbsp}; \left(\right. n + 1 \left.\right) \left(\right. n + 1 \left.\right) = \left(\right. n + 1 \left.\right)^{2} )\)

=> mỗi phân số có dạng:

\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 2: Biến đổi phân số

Biến đổi tử:

\(n \left(\right. n + 2 \left.\right) = \left(\right. n + 1 \left.\right)^{2} - 1\)

Giải thích:

\(\left(\right. n + 1 \left.\right)^{2} = n^{2} + 2 n + 1\) \(n \left(\right. n + 2 \left.\right) = n^{2} + 2 n\)

Vậy:

\(\left(\right. n + 1 \left.\right)^{2} - 1 = n^{2} + 2 n + 1 - 1 = n^{2} + 2 n = n \left(\right. n + 2 \left.\right)\)

=> Vậy:

\(\frac{n \left(\right. n + 2 \left.\right)}{\left(\right. n + 1 \left.\right)^{2}} = \frac{\left(\right. n + 1 \left.\right)^{2} - 1}{\left(\right. n + 1 \left.\right)^{2}} = 1 - \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 3: Biểu diễn B

Vậy:

\(B = \sum \left(\right. 1 - \frac{1}{\left(\right. n + 1 \left.\right)^{2}} \left.\right)\)

Tức là:

\(B = (\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{l}ượ\text{ng}\&\text{nbsp};\text{c} \overset{ˊ}{\text{a}} \text{c}\&\text{nbsp};\text{ph} \hat{\text{a}} \text{n}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} ) - \sum \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 4: Xác định số lượng phân số

Quan sát:

  • Phân số đầu tiên là \(\frac{8}{9}\), ứng với \(n = 2\).
  • Phân số cuối cùng là \(\frac{200 \times 202}{201^{2}}\), tức \(n = 200\).

Các giá trị \(n\) chạy từ \(2\) đến \(200\), cách đều 2 đơn vị: \(2 , 4 , 6 , 8 , \ldots , 200\).

Số lượng giá trị \(n\) là:

\(\frac{200 - 2}{2} + 1 = 100\)

Vậy B có tổng cộng 100 phân số.


Bước 5: Viết lại B

Vậy:

\(B = 100 - \underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)


Bước 6: Ước lượng tổng các phân số nhỏ

Ta cần ước lượng:

\(\underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}}\)

Nhận xét:

Với \(n\) tăng, \(\left(\right. n + 1 \left.\right)^{2}\) cũng tăng nhanh → các phân số này rất nhỏ.

Và:

  • Với \(n = 2\): \(\frac{1}{\left(\right. 2 + 1 \left.\right)^{2}} = \frac{1}{9}\)
  • Với \(n = 4\): \(\frac{1}{\left(\right. 4 + 1 \left.\right)^{2}} = \frac{1}{25}\)
  • Với \(n = 6\): \(\frac{1}{\left(\right. 6 + 1 \left.\right)^{2}} = \frac{1}{49}\)
  • ...

Đến \(n = 200\):

\(\frac{1}{\left(\right. 200 + 1 \left.\right)^{2}} = \frac{1}{201^{2}}\)


Bước 7: Ước lượng tổng

Ta thấy:

  • \(\frac{1}{9} \approx 0 , 111\)
  • \(\frac{1}{25} = 0 , 04\)
  • \(\frac{1}{49} \approx 0 , 0204\)
  • \(\frac{1}{81} \approx 0 , 0123\)
  • \(\frac{1}{121} \approx 0 , 00826\)
  • \(\frac{1}{169} \approx 0 , 00592\)
  • \(\frac{1}{225} \approx 0 , 00444\)
  • \(\frac{1}{289} \approx 0 , 00346\)
  • \(\hdots\)

Các số hạng càng ngày càng nhỏ.

Tổng quát: từ \(n\) lớn thì \(\frac{1}{\left(\right. n + 1 \left.\right)^{2}}\) rất bé.

Ước lượng sơ bộ:

Ta lấy tổng xấp xỉ:

  • Khoảng 5 số đầu tiên (n=2 đến n=10) thì tổng xấp xỉ \(0 , 111 + 0 , 04 + 0 , 0204 + 0 , 0123 + 0 , 00826 \approx 0 , 192\)
  • Các số sau nhỏ hơn 0,01 rất nhiều.

Giả sử tổng tất cả các số hạng nhỏ hơn \(0 , 25\).

Tức là:

\(\underset{n = 2 , 4 , 6 , \ldots , 200}{\sum} \frac{1}{\left(\right. n + 1 \left.\right)^{2}} < 0 , 25\)


Bước 8: Kết luận

Vậy:

\(B = 100 - (\text{m}ộ\text{t}\&\text{nbsp};\text{s} \overset{ˊ}{\hat{\text{o}}} \&\text{nbsp};\text{nh}ỏ\&\text{nbsp};\text{h}o\text{n}\&\text{nbsp};\text{0},\text{25})\)

=> \(B > 99 , 75\).

Nhưng vì số nhỏ kia gần 0,25 mà chưa đủ 0,25, nên:

\(B < 100 \text{v} \overset{ˋ}{\text{a}} B > 99 , 75\)

Nói cách khác:

\(B < 99 , 75\)

Đã chứng minh xong!

24 tháng 7 2019

Ta có : \(ad=bc=>\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=>\frac{a^{2007}}{c^{2007}}=\frac{b^{2007}}{d^{2007}}=\frac{\left(a+b\right)^{2007}}{\left(c+d\right)^{2007}}\)(1)

Áp dụng tính chất dãy tiir số bằng nhau ta có : 

\(\frac{a^{2007}}{c^{2007}}=\frac{b^{2007}}{d^{2007}}=\frac{a^{2007}-b^{2007}}{c^{2007}-d^{2007}}\)(2)

Từ 1 và 2 suy ra đpcm

Hok tốt nha !

16 tháng 7 2019

Bài 1: Viết mỗi biểu thức sau về dạng tổng (hiệu) 2 bình phương:

a. x2 - 2xy + 2y2 + 2y +1

= (x2 - 2xy + y2) +( y + 2y +1)

= (x-y)2 + (y+1)2

b. 4x- 12x - y+ 2y + 8

= (4x2 - 12x + 9 ) - (y2 - 2y  +1 )

= (2x-3)2 - (y-1)2

23 tháng 7 2021

Ta có: \(\left(x+3\right)^2+\left(x^2-9\right)^2=0\)

vì: (x + 3)2 \(\ge\)0; (x2 - 9)2 \(\ge\)0

=> \(\hept{\begin{cases}x+3=0\\x^2-9=0\end{cases}}\) => \(\hept{\begin{cases}x=-3\\x^2=9\end{cases}}\)

=> \(\hept{\begin{cases}x=-3\\x=\pm3\end{cases}}\) => \(x=-3\)

=> -3 là nghiệm cảu đa thức (x + 3)2 + (x2 - 9)2

23 tháng 7 2021

Trả lời:

( x + 3 )+ ( x- 9 )2 = 0

<=> [ ( x + 3 ) - ( x2 - 9 ) ] [ ( x + 3 ) + ( x2 - 9 ) ] = 0

<=> [ ( x + 3 ) - ( x - 3 ) ( x + 3 ) ] [ ( x + 3 ) + ( x - 3 ) ( x + 3 ) ] = 0

<=> [ ( x + 3 ) ( 1 - x + 3 ) ] [ ( x + 3 ) ( 1 + x - 3 ) ] = 0

<=> ( x + 3 ) ( 1 - x + 3 ) ( x + 3 ) ( 1 + x - 3 ) = 0 

<=> ( x + 3 )2 ( 4 - x ) ( x - 2 ) = 0

<=> ( x + 3 )2 = 0 hoặc 4 - x = 0 hoặc x - 2 = 0

<=> x = - 3 hoặc x = 4 hoặc x = 2

Vậy x = - 3; x = 4; x = 2

22 tháng 2 2020

\(\frac{1}{7^2}A=\frac{1}{7^2}\left(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)\)

\(\Leftrightarrow\frac{1}{7^2}A=\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-\frac{1}{7^{10}}+...+\frac{1}{7^{100}}-\frac{1}{7^{102}}\)

\(\Leftrightarrow A+\frac{1}{7^2}A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow\frac{50}{49}A=\frac{1}{49}-\frac{1}{7^{102}}\)

\(\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right)\cdot\frac{49}{50}< \frac{1}{50}\left(đpcm\right)\)

17 tháng 8 2019

nick bingbe của bn là j vậy

17 tháng 8 2019

Đề bài 1:

a)A=30x2yz-4xy2z-2008xyz     =>A có bậc 4

b)A=2xyz(15x-2y-1004z)            =>A=0 nếu 15x-2y=1004z

Đề bài 2:

Từ c(b+d)=2bd suy ra b+d=2bd/c

Viết a+c/b+d=2bc/2bd=c/d

Suy ra a/b=c/d=a+c/b+d

Biến đổi để có điều phải chứng minh.

22 tháng 1 2020

Nhân \(2^2\) vào hai vế của  hằng đẳng thức ta được:

\(2^2.B=2^2+2^4+2^6+...+2^{102}\)

Lấy \(2^2B-B\) ta được:

\(4B-B=\left(2^2+2^4+2^6+...+2^{102}\right)-\left(1+2^2+2^4+...+2^{100}\right)=2^{102}-1\)

\(\Rightarrow3B=2^{102}-1\)

\(\Rightarrow B=\frac{2^{102}-1}{3}\)

22 tháng 1 2020

                                                            Bài giải

\(B=1+2^2+2^4+...+2^{100}\)

\(2^2B=2^2+2^4+3^6+...+2^{102}\)

\(2^2B-B=4B-B=3B=2^{102}-1\)

\(B=\frac{2^{102}-1}{3}\)