
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


là giai thừa đó bn , bn chưa học hả, cái này mk học từ mấy tháng trc rùi

a) A = 23! + 19! + 15!
Vì số hạng trong A đều có thừa số là 10 nên các số ấy đều chia hết cho 10. \(\Rightarrow\) A \(⋮\) 10
\(\Rightarrow\) ĐPCM
b) Vì số hạng trong A đều có thừa số là 10 và 11 nên các số ấy đều chia hết cho 10 . 11 hay 110.
\(\Rightarrow\) A \(⋮\) 110
\(\Rightarrow\) ĐPCM

Bài 4:
a)Ta có: B= 23!+19!−15!
B=1.2.3.....11..23+1.2....11.19-1.2.....11.12.13.14.15
Vì 11 chia hết cho 11=>23! chia hết cho 11
19!chia hết cho 11
15! chia hết cho 11

19A=192010+19/192010+1=192010+1+18/192010+1=192010+1/192010+1+18/192010+1=1+18/192010
19B=192009+19/192009+1=192009+1+18/192009+1=192009+1/192009+1+18/192009+1=1+18/192009
Vậy A<B
Xin lỗi mình chịu câu trên
Ta có A=\(\frac{19^{2009}+1}{19^{2010}+1}\) Ta có:B=\(\frac{19^{2008}+1}{19^{2009}+1}\)
19B=\(\frac{19^{2009}+19}{19^{2009}+1}\)
19A=\(\frac{19^{2010}+19}{19^{2010}+1}\) 19B=\(\frac{19^{2009}+1+18}{19^{2009}+1}\)
19A=\(\frac{19^{2010}+1+18}{19^{2010}+1}\) 19B=\(1+\frac{18}{19^{2009}+1}\)
19A=\(1+\frac{18}{19^{2010}+1}\)
Vì \(\frac{18}{19^{2010}+1}< \frac{18}{19^{2009}+1}\)nên \(19A< 19B\)
\(\Leftrightarrow A< B\)
Vậy\(A< B\)

2)
S = \(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\)
S = 3 . (\(\dfrac{3}{1.4}+\dfrac{3}{4.7}+...+\dfrac{3}{43.46}\))
S = 1 . (\(\dfrac{1}{1.4}+\dfrac{1}{4.7}+...+\dfrac{1}{43.46}\))
S = 1 . (\(1-\dfrac{1}{4}+...+\dfrac{1}{43}-\dfrac{1}{46}\))
S = 1 . (\(1-\dfrac{1}{46}\))
S = 1 . \(\dfrac{45}{46}\)
S = \(\dfrac{45}{46}\)
=> \(\dfrac{45}{46}\) < 1

Bài làm:
a) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+11}{15+11}=\frac{24}{26}\)
b) Vì \(\frac{13}{15}< 1\)\(\Rightarrow\frac{13}{15}< \frac{13+10}{15+10}=\frac{23}{25}\)
c) Vì \(\frac{3}{5}< 1\)\(\Rightarrow\frac{3}{5}< \frac{3+30}{5+30}=\frac{33}{35}\)
Học tốt!!!!
1 lớp học có 2 học sinh một bạn bị chết hỏi còn bao nhiêu bạn

a, \(10^m-1⋮19,19⋮19\)
\(\Rightarrow\left(10^m-1\right)\left(10^m+1\right)+19⋮19\)
\(\Rightarrow10^{2m}-1+19⋮19\Rightarrow10^{2m}+18⋮19\)
\(b,\)Ta có : \(3+3^2+3^3+3^4+...+3^{23}+3^{24}+3^{25}\)
\(=3+\left(3^2+3^3+3^4\right)+...+\left(3^{23}+3^{24}+3^{25}\right)\)
\(=3+3\left(3+3^2+3^3\right)+...+3^{22}\left(3+3^2+3^3\right)\)
\(=3+3.39+...+3^{22}.39\)
\(=3+39\left(3+...+3^{22}\right)\)
Suy ra : B chia 39 dư 3
Vậy : B không chia hết cho 39

\(\left(7a+3b\right)⋮23\Leftrightarrow17\left(7a+3b\right)⋮23\)(vì \(\left(17,23\right)=1\))
\(\Leftrightarrow\left(119a+51b\right)⋮23\Leftrightarrow\left(119a-5.23a+51-2.23b\right)⋮23\)
\(\Leftrightarrow\left(4a+5b\right)⋮23\)
Do ta biến đổi tương đương nên điều ngược lại cũng đúng.
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{1997}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{1997}\right)⋮2\)
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{1996}\right)⋮13\).
Mà \(\left(2,13\right)=1\)nên \(S\)chia hết cho \(2.13=26\).
a )có là 23!=1.2.3...11...23 nên chia hết cho 11
tưng tự thì
23! = 23 * 22 * 21 * ... * 12 * 11 * 10 * ... * 3 * 2 * 1
19! = 19 * 18 * 17 * ... * 12 * 11 * 10 * ... * 3 * 2 * 1
15! = 15 * 14 * 13 * 12 * 11 * 10 * ... * 3 * 2 * 1
a) Vì mỗi số hạng có thừa số 11 nên B chia hết cho 11
b) Vì mỗi số hạng có thừa số 11 * 10 = 110 nên B chia hết cho 110