
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Ta có:x<y
=>x+x<y+x
\(\Rightarrow\frac{2a}{m}< \frac{a+b}{m}\)
=>2a<a+b
Mà \(x=\frac{a}{m}=\frac{2a}{2m}\)
\(y=\frac{b}{m}=\frac{2b}{2m}\)
Theo giả thuyết trên:
=>2a<a+b<2b
\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
\(\Rightarrow x< z< y\left(DPCM\right)\)

Theo đề bài ta có: \(x=\frac{a}{m};y=\frac{b}{m}\left(ab\inℤ;b\ne0\right)\)
Vì x < y => a < b
Ta có: \(x=\frac{2a}{2m};y=\frac{2b}{2m};z=\frac{\left(a+b\right)}{2m}\)
Vì a < b => a + a < a + b => 2a < a + b
Do 2a < a + b => x < z (1)
Vì a < b => a + b < b + b => a + b < 2b
Do a + b < 2b nên z < y (2)
Từ (1) và (2) => x < z < y

x=a/m=2a/2m y=b/m=2b/2m
x<y nên a<b
=>2a<a+b và =>a+b<2b
=>2a/2m < a+b/2m < 2b/2m
=>x<y<z ( đpcm)

Vì x < y (a/m < b/m) và m > 0 nên a < b .
x = a / m = 2a / 2m ; y = b / m = 2b / 2m ; z = a + b / 2m
a < b => a + a < a + b < b + b <=> 2a < a + b < 2b => 2a / 2m < a + b / 2m < 2b / 2m => x < z < y

do x<y =>a/m<b/m=>a<b
ta có:
x=a/m=2a/2m
y=b/m=2b/2m
do a<b=>a+a/2m<a+b/2m
<=>2a/2m<a+b/2m
<=>x<z (1)
do a<b=>a+b/2m<b+b/2m
<=>a+b/2m<2b/2m
<=>z<y (2)
từ (1) và (2)=>ĐPCM

Từ \(x=\frac{a}{m}\Rightarrow x=\frac{2a}{2m}\)
\(y=\frac{b}{m}\Rightarrow y=\frac{2b}{2m}\)
\(z=\frac{a+b}{2m}\)
Vì x<y (theo đề)
=>\(\frac{a}{m}< \frac{b}{m}\)=>a<b
Do đó :
+)a<b=>a+a<b+a => 2a<a+b (1)
+)a<b=>a+b<b+b=>a+b<2b (2)
=>2a<a+b<2b
=>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
=>x<z<y (đpcm)
\(\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{m}+\frac{a}{m}< \frac{a}{m}+\frac{b}{m}\Rightarrow\frac{2a}{m}< \frac{a+b}{m}\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\)(1)
\(\frac{a}{m}< \frac{b}{m}\Rightarrow\frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\Rightarrow\frac{a+b}{m}< \frac{2b}{m}\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\)(2)
Từ (1) và (2) :\(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
Chỉ cần m khác 0 là được. Không cần phải <0 như đề bài.